Question: Let \({{\bf{a}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{1}}}\\{\bf{5}}\end{array}} \right)\), \({{\bf{a}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right)\), \({{\bf{a}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{6}}\\{\bf{0}}\end{array}} \right)\), \({{\bf{b}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{5}}\\{ - {\bf{1}}}\end{array}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{ - {\bf{2}}}\end{array}} \right)\),\({{\bf{b}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{2}}\\{\bf{1}}\end{array}} \right)\) and \({\bf{n}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right)\), and let \(A = \left\{ {{{\bf{a}}_{\bf{1}}},{{\bf{a}}_{\bf{2}}},{{\bf{a}}_{\bf{3}}}} \right\}\) and \(B = \left\{ {{{\bf{b}}_{\bf{1}}},{{\bf{b}}_{\bf{2}}},{{\bf{b}}_{\bf{3}}}} \right\}\). Find a hyperplane H with normal n that separates A and B. Is there a hyperplane parallel to H that strictly separates A and B?

Short Answer

Expert verified

\(\left( {{H_0}:f} \right) = 3{x_1} + {x_2} - 2{x_3}\)

Hyperplane H does not separate A and B.

Step by step solution

01

Solve the equation \(n{\bf{v}} = {\bf{0}}\)

Consider \({\bf{v}} = \left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right)\).

Let \({H_0}\) be the origin that contains the normal vector, and then it can be written as shown below:

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}3&1&{ - 2}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = 0\\3{x_1} + {x_2} - 2{x_3} = 0\end{array}\)

So, it can be written as \(\left( {{H_0}:f} \right) = 3{x_1} + {x_2} - 2{x_3}\).

02

Find the value of d

As hyperplaneis passing through 6 nonzero vectors. So, the value of d is shown below:

\(d = 6\)

03

Find the dot products of \({\bf{n}}\) with given vectors

The dot product of \(n\) and \({{\bf{a}}_1}\) is:

\(\begin{array}{c}f\left( {{{\bf{a}}_1}} \right) = n \cdot {{\bf{a}}_1}\\ = 3\left( 2 \right) + \left( { - 1} \right) - 2\left( 5 \right)\\ = - 5\end{array}\)

The dot product of \(n\) and \({{\bf{a}}_2}\) is:

\(\begin{array}{c}f\left( {{{\bf{a}}_2}} \right) = n \cdot {{\bf{a}}_2}\\ = 3\left( 3 \right) + \left( 1 \right) - 2\left( 3 \right)\\ = 4\end{array}\)

The dot product of \(n\) and \({{\bf{a}}_3}\) is:

\(\begin{array}{c}f\left( {{{\bf{a}}_3}} \right) = n \cdot {{\bf{a}}_3}\\ = 3\left( { - 1} \right) + \left( 6 \right) - 2\left( 0 \right)\\ = 3\end{array}\)

The dot product of \(n\) and \({{\bf{b}}_1}\) is:

\(\begin{array}{c}f\left( {{{\bf{b}}_1}} \right) = n \cdot {{\bf{b}}_1}\\ = 3\left( 0 \right) + \left( 5 \right) - 2\left( { - 1} \right)\\ = 7\end{array}\)

The dot product of \(n\) and \({{\bf{b}}_2}\) is:

\(\begin{array}{c}f\left( {{{\bf{b}}_2}} \right) = n \cdot {{\bf{b}}_2}\\ = 3\left( 1 \right) + \left( { - 3} \right) - 2\left( { - 2} \right)\\ = 4\end{array}\)

The dot product of \(n\) and \({{\bf{b}}_3}\) is:

\(\begin{array}{c}f\left( {{{\bf{b}}_3}} \right) = n \cdot {{\bf{b}}_3}\\ = 3\left( 2 \right) + \left( 2 \right) - 2\left( 1 \right)\\ = 6\end{array}\)

It can be observed from the above equations \(f\left( A \right) < 4\) and \(f\left( B \right) > 4\), the parallel hyperplane \(\left( {f:4} \right)\) strictly separates A and B, then by theorem 13 H does not separate A and B.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let\(\left\{ {{p_1},{p_2},{p_3}} \right\}\)be an affinely dependent set of points in\({\mathbb{R}^{\bf{n}}}\)and let\(f:{\mathbb{R}^{\bf{n}}} \to {\mathbb{R}^{\bf{m}}}\)be a linear transformation. Show that\(\left\{ {f\left( {{{\bf{p}}_1}} \right),f\left( {{{\bf{p}}_2}} \right),f\left( {{{\bf{p}}_3}} \right)} \right\}\)is affinely dependent in\({\mathbb{R}^{\bf{m}}}\).

Find an example in \({\mathbb{R}^2}\) to show that equality need not hold in the statement of Exercise 23.

Question: Repeat Exercise 7 when

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{ - {\bf{2}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{6}}\\{ - {\bf{5}}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{0}}\\{{\bf{12}}}\\{ - {\bf{6}}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{1}}}\\{{\bf{15}}}\\{ - {\bf{7}}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{5}}}\\{\bf{3}}\\{ - {\bf{8}}}\\{\bf{6}}\end{array}} \right)\), and \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{6}}\\{ - {\bf{6}}}\\{ - {\bf{8}}}\end{array}} \right)\)

Question: In Exercise 8, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

8. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{2}}}\\{\bf{1}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{2}}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{7}}\\{ - {\bf{4}}}\\{\bf{4}}\end{array}} \right)\)

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left) {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the plane in \({\mathbb{R}^{\bf{3}}}\) spanned by the rows of \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{4}}&{ - {\bf{5}}}\\{\bf{0}}&{ - {\bf{2}}}&{\bf{8}}\end{array}} \right)\). That is, \(H = {\bf{Row}}\,B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free