In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

13. a. Use equation (12) to show that \({{\mathop{\rm q}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\).

b. Use equation (13) to show that \(8{{\mathop{\rm q}\nolimits} _2} = 8{{\mathop{\rm q}\nolimits} _3} + {{\mathop{\rm p}\nolimits} _0} + {{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _2} - {{\mathop{\rm p}\nolimits} _3}\).

c. Use part (b), equation (8), and part (a) to show that \({{\mathop{\rm q}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _1}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\). That is, \({{\mathop{\rm q}\nolimits} _2} = \frac{1}{2}\left( {{{\mathop{\rm q}\nolimits} _1} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

Short Answer

Expert verified
  1. It is proved that\({{\mathop{\rm q}\nolimits} _1}\)is the midpoint of the segment from\({{\mathop{\rm p}\nolimits} _0}\)to\({{\mathop{\rm p}\nolimits} _1}\).
  2. It is proved that\(8{{\mathop{\rm q}\nolimits} _2} = 8{{\mathop{\rm q}\nolimits} _3} + {{\mathop{\rm p}\nolimits} _0} + {{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _2} - {{\mathop{\rm p}\nolimits} _3}\).
  3. It is proved that \({{\mathop{\rm q}\nolimits} _2}\) is midpoint from of the segment from \({{\mathop{\rm q}\nolimits} _1}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\).

Step by step solution

01

Show that \({{\mathop{\rm q}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\)

a)

Let\({\mathop{\rm y}\nolimits} \left( t \right)\)be the Bezier curve determined by\({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\), and let\({\mathop{\rm z}\nolimits} \left( t \right)\)be the Bezier curve determined by\({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\)since\({\mathop{\rm z}\nolimits} \left( t \right)\)starts at\({\mathop{\rm x}\nolimits} \left( {.5} \right)\)when\(t = 0\),\({\mathop{\rm z}\nolimits} \left( t \right) = {\mathop{\rm x}\nolimits} \left( {.5 + .5t} \right)\)for\(0 \le t \le 1\).

Recall the equation (12), the control points for\({\mathop{\rm y}\nolimits} \left( t \right)\)satisfy

\(\begin{aligned}{}3\left( {{{\mathop{\rm q}\nolimits} _1} - {{\mathop{\rm q}\nolimits} _0}} \right) &= y'\left( 0 \right)\\ &= .5x'\left( 0 \right)\\ &= \frac{3}{2}\left( {{{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _0}} \right)\end{aligned}\)

Use the equation (12) as shown below:

\(\begin{aligned}{}3{{\mathop{\rm q}\nolimits} _1} - 3{{\mathop{\rm q}\nolimits} _0} &= \frac{3}{2}\left( {{{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _0}} \right)\\3{{\mathop{\rm q}\nolimits} _1} &= \frac{3}{2}{{\mathop{\rm p}\nolimits} _1} - \frac{3}{2}{{\mathop{\rm p}\nolimits} _0} + 3{{\mathop{\rm q}\nolimits} _0}\left( {{\mathop{\rm since}\nolimits} \,\,{{\mathop{\rm q}\nolimits} _0} = {{\mathop{\rm p}\nolimits} _0}} \right)\\{{\mathop{\rm q}\nolimits} _1} &= \frac{1}{2}{{\mathop{\rm p}\nolimits} _1} - \frac{1}{2}{{\mathop{\rm p}\nolimits} _0} + 1{{\mathop{\rm p}\nolimits} _0}\\{{\mathop{\rm q}\nolimits} _1} &= \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _0}} \right)\end{aligned}\)

Thus, it is proved that \({{\mathop{\rm q}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\).

02

Show that \(8{{\mathop{\rm q}\nolimits} _2} = 8{{\mathop{\rm q}\nolimits} _3} + {{\mathop{\rm p}\nolimits} _0} + {{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _2} - {{\mathop{\rm p}\nolimits} _3}\) 

b)

Recall the equation (13) as shown below

\(\begin{aligned}{}3\left( {{{\mathop{\rm q}\nolimits} _3} - {{\mathop{\rm q}\nolimits} _2}} \right) &= y'\left( 1 \right)\\ &= .5x'\left( {.5} \right)\\ &= \frac{3}{8}\left( { - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)\end{aligned}\)\(\)…(13)

Left-multiply the equation (13) by\(\frac{8}{3}\)as shown below:

\(\begin{aligned}{}\frac{8}{3} \times 3\left( {{{\mathop{\rm q}\nolimits} _3} - {{\mathop{\rm q}\nolimits} _2}} \right) &= \frac{8}{3} \times \frac{3}{8}\left( { - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)\\8\left( {{{\mathop{\rm q}\nolimits} _3} - {{\mathop{\rm q}\nolimits} _2}} \right) &= - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}\\8{{\mathop{\rm q}\nolimits} _3} - 8{{\mathop{\rm q}\nolimits} _2} &= - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}\\8{{\mathop{\rm q}\nolimits} _2} &= 8{{\mathop{\rm q}\nolimits} _3} + {{\mathop{\rm p}\nolimits} _0} + {{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _2} - {{\mathop{\rm p}\nolimits} _3}\end{aligned}\)

Thus, it is proved that \(8{{\mathop{\rm q}\nolimits} _2} = 8{{\mathop{\rm q}\nolimits} _3} + {{\mathop{\rm p}\nolimits} _0} + {{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _2} - {{\mathop{\rm p}\nolimits} _3}\).

03

Show that \({{\mathop{\rm q}\nolimits} _2}\) is the midpoint of the segment from\({{\mathop{\rm q}\nolimits} _1}\) to the midpoint of the segment from\({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\)

c)

The midpoint of the original curve\({\mathop{\rm x}\nolimits} \left( t \right)\)occurs at\({\mathop{\rm x}\nolimits} \left( {.5} \right)\)when\({\mathop{\rm x}\nolimits} \left( t \right)\)has the standard parameterization

\({\mathop{\rm x}\nolimits} \left( t \right) = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\mathop{\rm p}\nolimits} _0} + \left( {3t - 6{t^2} + 3{t^3}} \right){{\mathop{\rm p}\nolimits} _1} + \left( {3{t^2} - 3{t^3}} \right){{\mathop{\rm p}\nolimits} _2} + {t^3}{{\mathop{\rm p}\nolimits} _3}\)…(7)

The new control points\({{\mathop{\rm q}\nolimits} _3}\)and\({{\mathop{\rm r}\nolimits} _0}\)are given as shown below:

\(\begin{aligned}{}{{\mathop{\rm q}\nolimits} _3} &= {{\mathop{\rm r}\nolimits} _0}\\ &= {\mathop{\rm x}\nolimits} \left( {.5} \right)\\ &= \frac{1}{8}\left( {{{\mathop{\rm p}\nolimits} _0} + 3{{\mathop{\rm p}\nolimits} _1} + 3{{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}} \right)\end{aligned}\)

\(8{{\mathop{\rm q}\nolimits} _3} = {{\mathop{\rm p}\nolimits} _0} + 3{{\mathop{\rm p}\nolimits} _1} + 3{{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3}{\rm{ }}...{\rm{ }}\left( 8 \right)\)

Use equation (8) to substitute for 8\({{\mathop{\rm q}\nolimits} _3}\)in part (b) as shown below

\(\begin{aligned}{}8{{\mathop{\rm q}\nolimits} _2} &= {{\mathop{\rm p}\nolimits} _0} + 3{{\mathop{\rm p}\nolimits} _1} + 3{{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + {{\mathop{\rm p}\nolimits} _0} + {{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _2} - {{\mathop{\rm p}\nolimits} _3}\\ &= 2{{\mathop{\rm p}\nolimits} _0} + 4{{\mathop{\rm p}\nolimits} _1} + 2{{\mathop{\rm p}\nolimits} _2}\end{aligned}\)

Multiply the obtained equation by\(\frac{1}{8}\)as shown below:

\({{\mathop{\rm q}\nolimits} _2} = \frac{1}{4}{{\mathop{\rm p}\nolimits} _0} + \frac{1}{2}{{\mathop{\rm p}\nolimits} _1} + \frac{1}{4}{{\mathop{\rm p}\nolimits} _2}\)

Substitute\(\frac{1}{2}{{\mathop{\rm p}\nolimits} _1} = \frac{1}{4}{{\mathop{\rm p}\nolimits} _1} + \frac{1}{4}{{\mathop{\rm p}\nolimits} _1}\)in the above equation as shown below:

\(\begin{aligned}{}{{\mathop{\rm q}\nolimits} _2} &= \frac{1}{4}{{\mathop{\rm p}\nolimits} _0} + \frac{1}{4}{{\mathop{\rm p}\nolimits} _1} + \frac{1}{4}{{\mathop{\rm p}\nolimits} _1} + \frac{1}{4}{{\mathop{\rm p}\nolimits} _2}\\ &= \frac{1}{2}\left( {\frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _0} + {{\mathop{\rm p}\nolimits} _1}} \right) + \frac{1}{2}{{\mathop{\rm p}\nolimits} _1} + \frac{1}{2}{{\mathop{\rm p}\nolimits} _2}} \right)\end{aligned}\)

Use part (a) in the above equation as shown below:

\(\begin{aligned}{}{{\mathop{\rm q}\nolimits} _2} &= \frac{1}{2}\left( {{{\mathop{\rm q}\nolimits} _1} + \frac{1}{2}{{\mathop{\rm p}\nolimits} _1} + \frac{1}{2}{{\mathop{\rm p}\nolimits} _2}} \right)\\ &= \frac{1}{2}\left( {{{\mathop{\rm q}\nolimits} _1} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\end{aligned}\)

Thus, it is proved that \({{\mathop{\rm q}\nolimits} _2}\) is midpoint of the segment from \({{\mathop{\rm q}\nolimits} _1}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 18. Choose a set \(S\) of four points in \({\mathbb{R}^3}\) such that aff \(S\) is the plane \(2{x_1} + {x_2} - 3{x_3} = 12\). Justify your work.

Let\(T\)be a tetrahedron in “standard” position, with three edges along the three positive coordinate axes in\({\mathbb{R}^3}\), and suppose the vertices are\(a{{\bf{e}}_1}\),\(b{{\bf{e}}_2}\),\(c{{\bf{e}}_{\bf{3}}}\), and 0, where\(\left[ {\begin{array}{*{20}{c}}{{{\bf{e}}_1}}&{{{\bf{e}}_2}}&{{{\bf{e}}_3}}\end{array}} \right] = {I_3}\). Find formulas for the barycentric coordinates of an arbitrary point\({\bf{p}}\)in\({\mathbb{R}^3}\).

Let\({v_1} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{1}}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{5}}\end{array}} \right]\),\({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{3}}\end{array}} \right]\),\({p_1} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{5}}\end{array}} \right]\),\({p_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{1}}\end{array}} \right]\),\({p_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{3}}\end{array}} \right]\),\({p_{\bf{4}}} = \left[ {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{0}}\end{array}} \right]\),\({p_{\bf{5}}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{4}}\end{array}} \right]\),\({p_{\bf{6}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\end{array}} \right]\),\({p_{\bf{7}}} = \left[ {\begin{array}{*{20}{c}}{\bf{6}}\\{\bf{4}}\end{array}} \right]\)and let\(S = \left\{ {{v_1},{v_2},{v_3}} \right\}\).

  1. Show that the set is affinely independent.
  2. Find the barycentric coordinates of\({p_1}\),\({p_{\bf{2}}}\), and\({p_{\bf{3}}}\)with respect to S.
  3. On graph paper, sketch the triangle\(T\)with vertices\({v_1}\),\({v_{\bf{2}}}\), and\({v_{\bf{3}}}\), extend the sides as in Figure 8, and plot the points\({p_{\bf{4}}}\),\({p_{\bf{5}}}\),\({p_{\bf{6}}}\), and\({p_{\bf{7}}}\). Without calculating the actual values, determine the signs of the barycentric coordinates of points\({p_{\bf{4}}}\),\({p_{\bf{5}}}\),\({p_{\bf{6}}}\), and\({p_{\bf{7}}}\).

Question:In Exercises 21 and 22, mark each statement True or False. Justify each answer.

21. a. A linear transformation from\(\mathbb{R}\)to\({\mathbb{R}^n}\)is called a linear functional.

b. If\(f\)is a linear functional defined on\({\mathbb{R}^n}\), then there exists a real number\(k\)such that\(f\left( x \right) = kx\)for all\(x\)in\({\mathbb{R}^n}\).

c. If a hyper plane strictly separates sets\(A\)and\(B\), then\(A \cap B = \emptyset \)

d. If\(A\)and\(B\)are closed convex sets and\(A \cap B = \emptyset \), then there exists a hyper plane that strictly separate\(A\)and\(B\).

Question: In Exercise 8, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

8. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{2}}}\\{\bf{1}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{2}}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{7}}\\{ - {\bf{4}}}\\{\bf{4}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free