Let S be a convex subset of \({\mathbb{R}^n}\) and suppose that \(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\) is a linear transformation. Prove that the set \(f\left( S \right) = \left\{ {f\left( {\bf{x}} \right):{\bf{x}} \in S} \right\}\) is a convex subset of \({\mathbb{R}^m}\).

Short Answer

Expert verified

\(f\left( S \right)\) is a convex subset of \({\mathbb{R}^m}\).

Step by step solution

01

Find the value of the function for two different constants

Let, \({\bf{q}} \in f\left( S \right)\), then for \({\bf{r}},{\bf{s}} \in S\)

\(f\left( {\bf{r}} \right) = {\bf{p}}\) and \(f\left( {\bf{s}} \right) = {\bf{q}}\)

02

 Step 2: Check that \(f\left( S \right)\) is convex

Check whether the line segment \(y = \left( {1 - t} \right){\bf{p}} + t{\bf{q}}\) is in \(f\left( S \right)\):

\(\begin{aligned}{}y &= \left( {1 - t} \right){\bf{p}} + t{\bf{q}}\\ &= \left( {1 - t} \right)f\left( {\bf{r}} \right) + tf\left( {\bf{s}} \right)\\ &= f\left( {1 - t} \right){\bf{r}} + tf\left( {\bf{s}} \right)\\ &= f\left\{ {\left( {1 - t} \right){\bf{r}} + t{\bf{s}}} \right\}\end{aligned}\)

As S is a convex set, \(\left( {1 - t} \right){\bf{r}} + t{\bf{s}}\)is also in S, therefore

\(f\left\{ {\left( {1 - t} \right){\bf{r}} + t{\bf{s}}} \right\} \in f\left( S \right)\)

So, \(f\left( S \right)\) is aconvex subset of \({\mathbb{R}^m}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use only the definition of affine dependence to show that anindexed set \(\left\{ {{v_1},{v_2}} \right\}\) in \({\mathbb{R}^{\bf{n}}}\) is affinely dependent if and only if \({v_1} = {v_2}\).

Question 1: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\3\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right)\) in \({\mathbb{R}^2}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a.\(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 3{x_1} + {x_2}\)

Question 3: Repeat Exercise 1 where \(m\) is the minimum value of f on \(S\) instead of the maximum value.

Question: Let \({{\bf{a}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{1}}}\\{\bf{5}}\end{array}} \right)\), \({{\bf{a}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right)\), \({{\bf{a}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{6}}\\{\bf{0}}\end{array}} \right)\), \({{\bf{b}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{5}}\\{ - {\bf{1}}}\end{array}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{ - {\bf{2}}}\end{array}} \right)\),\({{\bf{b}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{2}}\\{\bf{1}}\end{array}} \right)\) and \({\bf{n}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right)\), and let \(A = \left\{ {{{\bf{a}}_{\bf{1}}},{{\bf{a}}_{\bf{2}}},{{\bf{a}}_{\bf{3}}}} \right\}\) and \(B = \left\{ {{{\bf{b}}_{\bf{1}}},{{\bf{b}}_{\bf{2}}},{{\bf{b}}_{\bf{3}}}} \right\}\). Find a hyperplane H with normal n that separates A and B. Is there a hyperplane parallel to H that strictly separates A and B?

Find an example in \({\mathbb{R}^2}\) to show that equality need not hold in the statement of Exercise 25.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free