Question: Let \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{3}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{ - {\bf{1}}}\\{\bf{3}}\end{array}} \right)\), \({{\bf{n}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{4}}\\{\bf{2}}\end{array}} \right)\), and \({{\bf{n}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{3}}\\{\bf{1}}\\{\bf{5}}\end{array}} \right)\), let \({H_{\bf{1}}}\) be the hyperplane in \({\mathbb{R}^{\bf{4}}}\) through \({{\bf{p}}_{\bf{1}}}\) with normal \({{\bf{n}}_{\bf{1}}}\), and let \({H_{\bf{2}}}\) be the hyperplane through \({{\bf{p}}_{\bf{2}}}\) with normal \({{\bf{n}}_{\bf{2}}}\). Give an explicit description of \({H_{\bf{1}}} \cap {H_{\bf{2}}}\). (Hint: Find a point p in \({H_{\bf{1}}} \cap {H_{\bf{2}}}\) and two linearly independent vectors \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) that span a subspace parallel to the 2-dimensional flat \({H_{\bf{1}}} \cap {H_{\bf{2}}}\).)

Short Answer

Expert verified

\({H_1} \cap {H_2} = \left\{ {{\bf{x}}:{\bf{x}} = {\bf{p}} + {x_3}{{\bf{v}}_1} + {x_4}{{\bf{v}}_2}} \right\}\)

Step by step solution

01

Find the values of \({d_{\bf{1}}}\) and \({d_{\bf{2}}}\)

Find \({d_1}\) for \({H_1}\).

\(\begin{array}{c}{d_1} = {{\bf{n}}_1} \cdot {{\bf{p}}_1}\\ = 1\left( 2 \right) + 2\left( { - 3} \right) + 4\left( 1 \right) + 2\left( 2 \right)\\ = 4\end{array}\)

Find \({d_2}\) for \({H_2}\).

\(\begin{array}{c}{d_2} = {{\bf{n}}_2} \cdot {{\bf{p}}_2}\\ = 2\left( 2 \right) + 3\left( 2 \right) + 1\left( { - 1} \right) + 5\left( 3 \right)\\ = 22\end{array}\)

02

Write the augmented matrix

The system of equations is:

\(\left( {\begin{array}{*{20}{c}}1&2&4&2\end{array}} \right){\bf{x}} = 4\)

\(\left( {\begin{array}{*{20}{c}}2&3&1&5\end{array}} \right){\bf{x}} = 22\)

The augmented matrix can be written as shown below:

\(\left( {\begin{array}{*{20}{c}}1&2&4&2&4\\2&3&1&5&{22}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0&{ - 10}&4&{32}\\0&1&7&{ - 1}&{ - 14}\end{array}} \right)\)

03

Write the general solution

The general solution is:

\(\begin{array}{c}x = \left( {\begin{array}{*{20}{c}}{32}\\{ - 14}\\0\\0\end{array}} \right) + {x_3}\left( {\begin{array}{*{20}{c}}{10}\\{ - 7}\\1\\0\end{array}} \right) + {x_4}\left( {\begin{array}{*{20}{c}}{ - 4}\\1\\0\\1\end{array}} \right)\\ = p + {x_3}{{\bf{v}}_1} + {x_4}{{\bf{v}}_2}\end{array}\)

So,

\(p = \left( {\begin{array}{*{20}{c}}{32}\\{ - 14}\\0\\0\end{array}} \right)\), \({{\bf{v}}_1} = \left( {\begin{array}{*{20}{c}}{10}\\{ - 7}\\1\\0\end{array}} \right)\) and \({{\bf{v}}_2} = \left( {\begin{array}{*{20}{c}}{ - 4}\\1\\0\\1\end{array}} \right)\)

Therefore, \({H_1} \cap {H_2} = \left\{ {{\bf{x}}:{\bf{x}} = {\bf{p}} + {x_3}{{\bf{v}}_1} + {x_4}{{\bf{v}}_2}} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 15. Let \(A\) be an \({\rm{m}} \times {\rm{n}}\) matrix and, given \({\rm{b}}\) in \({\mathbb{R}^m}\), show that the set \(S\) of all solutions of \(A{\rm{x}} = {\rm{b}}\) is an affine subset of \({\mathbb{R}^n}\).

Let\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\3\\{ - 6}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{7}}\\3\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{9}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{9}}\end{array}} \right]\), \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{1.4}\\{{\bf{1}}.{\bf{5}}}\\{ - {\bf{3}}.{\bf{1}}}\end{array}} \right]\), and \({\bf{x}}\left( t \right) = {\bf{a}} + t{\bf{b}}\)for \(t \ge {\bf{0}}\).Find the point where the ray\({\bf{x}}\left( t \right)\)intersects the plane that contains the triangle with vertices\({v_1}\),\({v_{\bf{2}}}\), and\({v_{\bf{3}}}\). Is this point inside the triangle?


Prove Theorem 6 for an affinely independent set\(S = \left\{ {{v_1},...,{v_k}} \right\}\)in\({\mathbb{R}^{\bf{n}}}\). [Hint:One method is to mimic the proof of Theorem 7 in Section 4.4.]

Question: In Exercise 7, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{4}}\\{\bf{1}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{ - {\bf{2}}}\\{\bf{5}}\end{array}} \right)\)

In Exercises 21–24, a, b, and c are noncollinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \)and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

24. Take q on the line segment from b to c and consider the line through q and a, which may be written as\(p = \left( {1 - x} \right)q + xa\)for all real x. Show that, for each x,\(det\left[ {\begin{array}{*{20}{c}}{\widetilde p}&{\widetilde b}&{\widetilde c}\end{array}} \right] = x \cdot det\left[ {\begin{array}{*{20}{c}}{\widetilde a}&{\widetilde b}&{\widetilde c}\end{array}} \right]\). From this and earlier work, conclude that the parameter x is the first barycentric coordinate of p. However, by construction, the parameter x also determines the relative distance between p and q along the segment from q to a. (When x = 1, p = a.) When this fact is applied to Example 5, it shows that the colors at vertex a and the point q are smoothly interpolated as p moves along the line between a and q.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free