The conditions for affine dependence are stronger than those for linear dependence, so an affinely dependent set is automatically linearly dependent. Also, a linearly independent set cannot be affinely dependent and therefore must be affinely independent. Construct two linearly dependent indexed sets\({S_{\bf{1}}}\)and\({S_{\bf{2}}}\)in\({\mathbb{R}^2}\)such that\({S_{\bf{1}}}\)is affinely dependent and\({S_{\bf{2}}}\)is affinely independent. In each case, the set should contain either one, two, or three nonzero points.

Short Answer

Expert verified

The indexed set \({S_1}\)is affinelyand linearly dependent.

The indexed set \({S_2}\) is affinelyand linearly independent.

Step by step solution

01

State the condition for affinely dependence

The set is said to be affinely dependent if the set \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},...,{{\bf{v}}_p}} \right\}\) in the dimension\({\mathbb{R}^n}\) exists such that for non-zero scalars\({c_1},{c_2},...,{c_p}\), the sum of scalars is zero i.e.\({c_1} + {c_2} + ... + {c_p} = 0\), and \({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + ... + {c_p}{{\bf{v}}_p} = 0\).

02

Show affinely dependence

Let\({S_1} = \left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},{{\bf{v}}_3}} \right\}\)be the set of vectors, where\({{\bf{v}}_1} = \left[ {\begin{aligned}{{}{}}3\\{ - 3}\end{aligned}} \right]\),\({{\bf{v}}_2} = \left[ {\begin{aligned}{{}{}}0\\6\end{aligned}} \right]\), and\({{\bf{v}}_3} = \left[ {\begin{aligned}{{}{}}2\\0\end{aligned}} \right]\).

Let the newpoints, \({{\bf{v}}_3} - {{\bf{v}}_1}\)and \({{\bf{v}}_2} - {{\bf{v}}_1}\), be obtained by eliminating the first point.

\(\begin{aligned}{}{{\bf{v}}_3} - {{\bf{v}}_1} &= \left[ {\begin{aligned}{{}{}}2\\0\end{aligned}} \right] - \left[ {\begin{aligned}{{}{}}3\\{ - 3}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{{}{}}{ - 1}\\3\end{aligned}} \right]\end{aligned}\)

And

\(\begin{aligned}{}{{\bf{v}}_2} - {{\bf{v}}_1} &= \left[ {\begin{aligned}{{}{}}0\\6\end{aligned}} \right] - \left[ {\begin{aligned}{{}{}}3\\{ - 3}\end{aligned}} \right]\\ &= \left[ {\begin{aligned}{{}{}}{ - 3}\\9\end{aligned}} \right]\end{aligned}\)

So, \({{\bf{v}}_2} - {{\bf{v}}_1} = 3\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right)\).

Simplify the equation \({{\bf{v}}_2} - {{\bf{v}}_1} = 3\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right)\).

\[\begin{aligned}{}{{\bf{v}}_2} - {{\bf{v}}_1} &= 3{{\bf{v}}_3} - 3{{\bf{v}}_1}\\2{{\bf{v}}_1} + {{\bf{v}}_2} - 3{{\bf{v}}_3} &= 0\end{aligned}\]

If the vectors are affinely dependent, the sum of weightsis 0. In the equation \(3{{\bf{v}}_1} + {{\bf{v}}_2} - 3{{\bf{v}}_3} = 0\), the weights are 2, 1, and \( - 3\). So,

\(2 + 1 - 3 = 0\).

Thus, the indexed set \({S_1}\) is affinelyand linearly dependent.

03

 Step 3: Show affinely independence

Let\({S_2} = \left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}}} \right\}\)be the set of vectors, where\({{\bf{v}}_1} = \left[ {\begin{aligned}{{}{}}1\\2\end{aligned}} \right]\)and\({{\bf{v}}_2} = \left[ {\begin{aligned}{{}{}}2\\4\end{aligned}} \right]\).

So, \({{\bf{v}}_2} = 2{{\bf{v}}_1}\).

Simplify the equation \({{\bf{v}}_2} = 2{{\bf{v}}_1}\).

\({{\bf{v}}_2} - 2{{\bf{v}}_1} = 0\)

For thevectors to be affinely dependent, the sum of weights must be 0. In the equation \({{\bf{v}}_2} - 2{{\bf{v}}_1} = 0\), the weights are1 and \( - 2\). So,

\(\begin{aligned}{}1 - 2 &= - 1\\ &\ne 0\end{aligned}\).

Thus, the indexed set \({S_2}\) is affinelyand linearly independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) be cubic Bézier curves with control points \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}{{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\)and \(\left\{ {{{\bf{p}}_{\bf{3}}}{\bf{,}}{{\bf{p}}_{\bf{4}}}{\bf{,}}{{\bf{p}}_{\bf{5}}}{\bf{,}}{{\bf{p}}_{\bf{6}}}} \right\}\) respectively, so that \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) are joined at \({{\bf{p}}_3}\) . The following questions refer to the curve consisting of \({\bf{x}}\left( t \right)\) followed by \(y\left( t \right)\). For simplicity, assume that the curve is in \({\mathbb{R}^2}\).

a. What condition on the control points will guarantee that the curve has \({C^1}\) continuity at \({{\bf{p}}_3}\) ? Justify your answer.

b. What happens when \({\bf{x'}}\left( 1 \right)\) and \({\bf{y'}}\left( 1 \right)\) are both the zero vector?

Question: Suppose that the solutions of an equation \(A{\bf{x}} = {\bf{b}}\) are all of the form \({\bf{x}} = {x_{\bf{3}}}{\bf{u}} + {\bf{p}}\), where \({\bf{u}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right)\) and \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{\bf{4}}\end{array}} \right)\). Find points \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) such that the solution set of \(A{\bf{x}} = {\bf{b}}\) is \({\bf{aff}}\left\{ {{{\bf{v}}_{\bf{1}}},\,{{\bf{v}}_{\bf{2}}}} \right\}\).

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the column space of the matrix \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{5}}&{\bf{2}}\\{ - {\bf{4}}}&{ - {\bf{4}}}\end{array}} \right)\). That is, \(H = {\bf{Col}}\,B\).(Hint: How is \({\bf{Col}}\,B\)related to Nul \({B^T}\)? See section 6.1)

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

13. a. Use equation (12) to show that \({{\mathop{\rm q}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\).

b. Use equation (13) to show that \(8{{\mathop{\rm q}\nolimits} _2} = 8{{\mathop{\rm q}\nolimits} _3} + {{\mathop{\rm p}\nolimits} _0} + {{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _2} - {{\mathop{\rm p}\nolimits} _3}\).

c. Use part (b), equation (8), and part (a) to show that \({{\mathop{\rm q}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _1}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\). That is, \({{\mathop{\rm q}\nolimits} _2} = \frac{1}{2}\left( {{{\mathop{\rm q}\nolimits} _1} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

Question:In Exercises 21 and 22, mark each statement True or False. Justify each answer.

21. a. A linear transformation from\(\mathbb{R}\)to\({\mathbb{R}^n}\)is called a linear functional.

b. If\(f\)is a linear functional defined on\({\mathbb{R}^n}\), then there exists a real number\(k\)such that\(f\left( x \right) = kx\)for all\(x\)in\({\mathbb{R}^n}\).

c. If a hyper plane strictly separates sets\(A\)and\(B\), then\(A \cap B = \emptyset \)

d. If\(A\)and\(B\)are closed convex sets and\(A \cap B = \emptyset \), then there exists a hyper plane that strictly separate\(A\)and\(B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free