Let \({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{{}}{\bf{1}}\\{\bf{0}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{{}}{\bf{1}}\\{\bf{2}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{{}}{\bf{4}}\\{\bf{2}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{4}}} = \left( {\begin{aligned}{{}}{\bf{4}}\\{\bf{0}}\end{aligned}} \right)\), and\(p = \left( {\begin{aligned}{{}}{\bf{2}}\\{\bf{1}}\end{aligned}} \right)\). Confirm that

\({\bf{p}} = \frac{{\bf{1}}}{{\bf{3}}}{{\bf{v}}_{\bf{1}}} + \frac{{\bf{1}}}{{\bf{3}}}{{\bf{v}}_{\bf{2}}} + \frac{{\bf{1}}}{{\bf{6}}}{{\bf{v}}_{\bf{3}}} + \frac{{\bf{1}}}{{\bf{6}}}{{\bf{v}}_{\bf{4}}}\)and \({{\bf{v}}_{\bf{1}}} - {{\bf{v}}_{\bf{2}}} + {{\bf{v}}_{\bf{3}}} - {{\bf{v}}_{\bf{4}}} = {\bf{0}}\).

Use the procedure in the proof of Caratheodory’s Theorem to express p as a convex combination of three of the \({{\bf{v}}_i}\)’s. Do this in two ways.

Short Answer

Expert verified

\({\bf{p}} = \frac{1}{6}{{\bf{v}}_1} + \frac{1}{2}{{\bf{v}}_2} + \frac{1}{3}{{\bf{v}}_4}\) and \({\bf{p}} = \frac{1}{2}{{\bf{v}}_1} + \frac{1}{6}{{\bf{v}}_2} + \frac{1}{3}{{\bf{v}}_3}\)

Step by step solution

01

Verify the expression for p

\(\begin{aligned}{}\frac{1}{3}{{\bf{v}}_1} + \frac{1}{3}{{\bf{v}}_2} + \frac{1}{6}{{\bf{v}}_3} + \frac{1}{6}{{\bf{v}}_4} &= \frac{1}{3}\left( {\begin{aligned}{{}}1\\0\end{aligned}} \right) + \frac{1}{3}\left( {\begin{aligned}{{}}1\\2\end{aligned}} \right) + \frac{1}{6}\left( {\begin{aligned}{{}}4\\2\end{aligned}} \right) + \frac{1}{6}\left( {\begin{aligned}{{}}4\\0\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{\frac{1}{3} + \frac{1}{3} + \frac{4}{6} + \frac{4}{6}}\\{0 + \frac{2}{3} + \frac{2}{6} + 0}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}2\\1\end{aligned}} \right)\\ &= {\bf{p}}\end{aligned}\)

02

Verify the equation \({{\bf{v}}_{\bf{1}}} - {{\bf{v}}_{\bf{2}}} + {{\bf{v}}_{\bf{3}}} - {{\bf{v}}_{\bf{4}}} = {\bf{0}}\)

Substitute value in the equation \({{\bf{v}}_1} - {{\bf{v}}_2} + {{\bf{v}}_3} - {{\bf{v}}_4} = 0\).

\(\begin{aligned}{}{{\bf{v}}_1} - {{\bf{v}}_2} + {{\bf{v}}_3} - {{\bf{v}}_4} &= \left( {\begin{aligned}{{}}1\\0\end{aligned}} \right) - \left( {\begin{aligned}{{}}1\\2\end{aligned}} \right) + \left( {\begin{aligned}{{}}4\\2\end{aligned}} \right) - \left( {\begin{aligned}{{}}4\\0\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}0\\0\end{aligned}} \right)\\ &= 0\end{aligned}\)

From two steps, the sum of the coefficients is 0, so the combination is an affine dependence relationship. Both the given equations are valid.

03

Consider the coefficients of \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{3}}}\)

From the equations \({\bf{p}} = \frac{1}{3}{{\bf{v}}_1} + \frac{1}{3}{{\bf{v}}_2} + \frac{1}{6}{{\bf{v}}_3} + \frac{1}{6}{{\bf{v}}_4}\) and \({{\bf{v}}_1} - {{\bf{v}}_2} + {{\bf{v}}_3} - {{\bf{v}}_4} = 0\), the coefficients \({{\bf{v}}_1}\) and \({{\bf{v}}_3}\) are \(\frac{1}{3}\) and \(\frac{1}{6}\).

Subtract \(\frac{1}{6}\) times \({{\bf{v}}_1} - {{\bf{v}}_2} + {{\bf{v}}_3} - {{\bf{v}}_4} = 0\) from \({\bf{p}} = \frac{1}{3}{{\bf{v}}_1} + \frac{1}{3}{{\bf{v}}_2} + \frac{1}{6}{{\bf{v}}_3} + \frac{1}{6}{{\bf{v}}_4}\).

\(\begin{aligned}{}{\bf{p}} - 0 = \frac{1}{3}{{\bf{v}}_1} + \frac{1}{3}{{\bf{v}}_2} + \frac{1}{6}{{\bf{v}}_3} + \frac{1}{6}{{\bf{v}}_4} - \frac{1}{6}\left( {{{\bf{v}}_1} - {{\bf{v}}_2} + {{\bf{v}}_3} - {{\bf{v}}_4}} \right)\\{\bf{p}} = \left( {\frac{1}{3} - \frac{1}{6}} \right){{\bf{v}}_1} + \left( {\frac{1}{3} + \frac{1}{6}} \right){{\bf{v}}_2} + \left( {\frac{1}{6} - \frac{1}{6}} \right){{\bf{v}}_3} + \left( {\frac{1}{6} + \frac{1}{6}} \right){{\bf{v}}_4}\\ = \frac{1}{6}{{\bf{v}}_1} + \frac{1}{2}{{\bf{v}}_2} + \frac{1}{3}{{\bf{v}}_4}\end{aligned}\)

Similarly, add \(\frac{1}{6}\) times \({{\bf{v}}_1} - {{\bf{v}}_2} + {{\bf{v}}_3} - {{\bf{v}}_4} = 0\) to \({\bf{p}} = \frac{1}{3}{{\bf{v}}_1} + \frac{1}{3}{{\bf{v}}_2} + \frac{1}{6}{{\bf{v}}_3} + \frac{1}{6}{{\bf{v}}_4}\).

\(\begin{aligned}{}{\bf{p}} - 0 = \frac{1}{3}{{\bf{v}}_1} + \frac{1}{3}{{\bf{v}}_2} + \frac{1}{6}{{\bf{v}}_3} + \frac{1}{6}{{\bf{v}}_4} + \frac{1}{6}\left( {{{\bf{v}}_1} - {{\bf{v}}_2} + {{\bf{v}}_3} - {{\bf{v}}_4}} \right)\\{\bf{p}} = \left( {\frac{1}{3} + \frac{1}{6}} \right){{\bf{v}}_1} + \left( {\frac{1}{3} - \frac{1}{6}} \right){{\bf{v}}_2} + \left( {\frac{1}{6} + \frac{1}{6}} \right){{\bf{v}}_3} + \left( {\frac{1}{6} - \frac{1}{6}} \right){{\bf{v}}_4}\\ = \frac{1}{2}{{\bf{v}}_1} + \frac{1}{6}{{\bf{v}}_2} + \frac{1}{3}{{\bf{v}}_3}\end{aligned}\)

So, the expressions for p are\({\bf{p}} = \frac{1}{6}{{\bf{v}}_1} + \frac{1}{2}{{\bf{v}}_2} + \frac{1}{3}{{\bf{v}}_4}\) and \({\bf{p}} = \frac{1}{2}{{\bf{v}}_1} + \frac{1}{6}{{\bf{v}}_2} + \frac{1}{3}{{\bf{v}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({\bf{x}}\left( t \right)\) be a B-spline in Exercise 2, with control points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\) , \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\).

a. Compute the tangent vector \({\bf{x}}'\left( t \right)\) and determine how the derivatives \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points. Give geometric descriptions of the directions of these tangent vectors. Explore what happens when both \({\bf{x}}'\left( 0 \right)\)and \({\bf{x}}'\left( 1 \right)\)equal 0. Justify your assertions.

b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_2}\) as the origin of the coordinate system.]

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

5.\(\left( {\begin{aligned}{{}}1\\0\\{ - 2}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\1\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 1}\\5\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\5\\{ - 3}\end{aligned}} \right)\)

Let\(\left\{ {{p_1},{p_2},{p_3}} \right\}\)be an affinely dependent set of points in\({\mathbb{R}^{\bf{n}}}\)and let\(f:{\mathbb{R}^{\bf{n}}} \to {\mathbb{R}^{\bf{m}}}\)be a linear transformation. Show that\(\left\{ {f\left( {{{\bf{p}}_1}} \right),f\left( {{{\bf{p}}_2}} \right),f\left( {{{\bf{p}}_3}} \right)} \right\}\)is affinely dependent in\({\mathbb{R}^{\bf{m}}}\).

Question: 18. Choose a set \(S\) of four points in \({\mathbb{R}^3}\) such that aff \(S\) is the plane \(2{x_1} + {x_2} - 3{x_3} = 12\). Justify your work.

Question: Let \({{\bf{a}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{1}}}\\{\bf{5}}\end{array}} \right)\), \({{\bf{a}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right)\), \({{\bf{a}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{6}}\\{\bf{0}}\end{array}} \right)\), \({{\bf{b}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{5}}\\{ - {\bf{1}}}\end{array}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{ - {\bf{2}}}\end{array}} \right)\),\({{\bf{b}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{2}}\\{\bf{1}}\end{array}} \right)\) and \({\bf{n}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right)\), and let \(A = \left\{ {{{\bf{a}}_{\bf{1}}},{{\bf{a}}_{\bf{2}}},{{\bf{a}}_{\bf{3}}}} \right\}\) and \(B = \left\{ {{{\bf{b}}_{\bf{1}}},{{\bf{b}}_{\bf{2}}},{{\bf{b}}_{\bf{3}}}} \right\}\). Find a hyperplane H with normal n that separates A and B. Is there a hyperplane parallel to H that strictly separates A and B?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free