Explain why a cubic Bezier curve is completely determined by \({\mathop{\rm x}\nolimits} \left( 0 \right)\), \(x'\left( 0 \right)\), \({\mathop{\rm x}\nolimits} \left( 1 \right)\), and \(x'\left( 1 \right)\).

Short Answer

Expert verified

The cubic Bezier curve is determined by\({\mathop{\rm x}\nolimits} \left( 0 \right),x'\left( 0 \right),{\mathop{\rm x}\nolimits} \left( 1 \right),\)and\(x'\left( 1 \right)\).

Step by step solution

01

Explain a cubic Bezier curve is wholly determined by \({\mathop{\rm x}\nolimits} \left( 0 \right),x'\left( 0 \right),{\mathop{\rm x}\nolimits} \left( 1 \right),\) and \(x'\left( 1 \right)\) 

The cubic Bezier curve is determined by four control points.

Let\({\mathop{\rm x}\nolimits} \left( t \right)\)be the cubic Bezier curve determined by the control points\({{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},\)and\({{\mathop{\rm p}\nolimits} _3}\).

The midpoint of the original curve\({\mathop{\rm x}\nolimits} \left( t \right)\)occurs at\({\mathop{\rm x}\nolimits} \left( {.5} \right)\)when\({\mathop{\rm x}\nolimits} \left( t \right)\)has the standard parameterization

\({\mathop{\rm x}\nolimits} \left( t \right) = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\mathop{\rm p}\nolimits} _0} + \left( {3t - 6{t^2} + 3{t^3}} \right){{\mathop{\rm p}\nolimits} _1} + \left( {3{t^2} - 3{t^3}} \right){{\mathop{\rm p}\nolimits} _2} + {t^3}{{\mathop{\rm p}\nolimits} _3}\)

02

Cubic Bezier curve

Differentiation of\({\mathop{\rm x}\nolimits} \left( t \right)\)as shown below:

\(\begin{aligned}{}x'\left( t \right) &= \left( { - 3 + 6t - 3{t^2}} \right){{\mathop{\rm p}\nolimits} _0} + \left( {3 - 12t + 9{t^2}} \right){{\mathop{\rm p}\nolimits} _1} + \left( {6t - 9{t^2}} \right){{\mathop{\rm p}\nolimits} _2} + 3{t^2}{{\mathop{\rm p}\nolimits} _3}\\x'\left( 0 \right) & = - 3{{\mathop{\rm p}\nolimits} _0} + 3{{\mathop{\rm p}\nolimits} _1} & = 3\left( {{{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _0}} \right)\\x'\left( 1 \right) & = - 3{{\mathop{\rm p}\nolimits} _2} + 3{{\mathop{\rm p}\nolimits} _3} & = 3\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\end{aligned}\)

This demonstrates that the tangent vector\(x'\left( 0 \right)\)points in the direction from\({{\mathop{\rm p}\nolimits} _0}\)to\({{\mathop{\rm p}\nolimits} _1}\)and is 3 times the length of\({{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _0}\).

Similarly,\(x'\left( 1 \right)\)points in the direction from\({{\mathop{\rm p}\nolimits} _2}\)to\({{\mathop{\rm p}\nolimits} _3}\)and is three times the length of\({{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}\).

Thus, the cubic Bezier curve is determined by \({\mathop{\rm x}\nolimits} \left( 0 \right),x'\left( 0 \right),{\mathop{\rm x}\nolimits} \left( 1 \right),\)and\(x'\left( 1 \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the column space of the matrix \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{ - {\bf{4}}}&{\bf{2}}\\{\bf{7}}&{ - {\bf{6}}}\end{array}} \right)\). That is, \(H = {\bf{Col}}\,B\).(Hint: How is \({\bf{Col}}\,B\) related to Nul \({B^T}\)? See section 6.1)

The conditions for affine dependence are stronger than those for linear dependence, so an affinely dependent set is automatically linearly dependent. Also, a linearly independent set cannot be affinely dependent and therefore must be affinely independent. Construct two linearly dependent indexed sets\({S_{\bf{1}}}\)and\({S_{\bf{2}}}\)in\({\mathbb{R}^2}\)such that\({S_{\bf{1}}}\)is affinely dependent and\({S_{\bf{2}}}\)is affinely independent. In each case, the set should contain either one, two, or three nonzero points.

Question: In Exercise 5, determine whether or not each set is compact and whether or not it is convex.

5. Use the sets from Exercise 3.

Let \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) be cubic Bézier curves with control points \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}{{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\)and \(\left\{ {{{\bf{p}}_{\bf{3}}}{\bf{,}}{{\bf{p}}_{\bf{4}}}{\bf{,}}{{\bf{p}}_{\bf{5}}}{\bf{,}}{{\bf{p}}_{\bf{6}}}} \right\}\) respectively, so that \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) are joined at \({{\bf{p}}_3}\) . The following questions refer to the curve consisting of \({\bf{x}}\left( t \right)\) followed by \(y\left( t \right)\). For simplicity, assume that the curve is in \({\mathbb{R}^2}\).

a. What condition on the control points will guarantee that the curve has \({C^1}\) continuity at \({{\bf{p}}_3}\) ? Justify your answer.

b. What happens when \({\bf{x'}}\left( 1 \right)\) and \({\bf{y'}}\left( 1 \right)\) are both the zero vector?

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{0}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{6}}}\\{\bf{7}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{\bf{3}}\\{\bf{1}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{4}}\\{ - {\bf{4}}}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free