Repeat Exercise 15 for points \({{\rm{v}}_1} = \left( \begin{aligned}{} - 1\\\,\,0\end{aligned} \right)\), \({{\rm{v}}_2} = \left( \begin{aligned}{}\,0\\\,3\end{aligned} \right)\), \({{\rm{v}}_3} = \left( \begin{aligned}{}\,3\\\,1\end{aligned} \right)\), \({{\rm{v}}_4} = \left( \begin{aligned}{}1\\ - \,1\end{aligned} \right)\), and \({\rm{p}} = \left( \begin{aligned}{}1\\2\end{aligned} \right)\) , given that \({\rm{p}}\, = \frac{1}{{121}}{{\rm{v}}_1} + \frac{{72}}{{121}}{{\rm{v}}_2} + \frac{{37}}{{121}}{{\rm{v}}_3} + \frac{1}{{11}}{{\rm{v}}_4}\)

and \({\rm{10}}{{\rm{v}}_1} - {\rm{6}}{{\rm{v}}_2} + 7{{\rm{v}}_3} - 11{{\rm{v}}_4} = 0\).

Short Answer

Expert verified

\({\bf{p}} = \frac{1}{6}{{\bf{v}}_1} + \frac{1}{2}{{\bf{v}}_2} + \frac{1}{3}{{\bf{v}}_4}\) and \({\rm{p}} = \frac{1}{{11}}{{\bf{v}}_1} + \frac{6}{{11}}{{\bf{v}}_2} + \frac{4}{{11}}{{\bf{v}}_3}\)

Step by step solution

01

Verify the expression for p

\(\begin{aligned}{}\frac{1}{{121}}{{\bf{v}}_1} + \frac{{72}}{{121}}{{\bf{v}}_2} + \frac{{37}}{{121}}{{\bf{v}}_3} + \frac{1}{{11}}{{\bf{v}}_4} &= \frac{1}{{121}}\left( {\begin{aligned}{{}}{ - 1}\\0\end{aligned}} \right) + \frac{{72}}{{121}}\left( {\begin{aligned}{{}}0\\3\end{aligned}} \right) + \frac{{37}}{{121}}\left( {\begin{aligned}{{}}3\\1\end{aligned}} \right) + \frac{1}{{11}}\left( {\begin{aligned}{{}}1\\{ - 1}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}{ - \frac{1}{{121}} + 0 + \frac{{111}}{{121}} + \frac{1}{{11}}}\\{0 + \frac{{216}}{{121}} + \frac{{37}}{{121}} - \frac{1}{{11}}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{}}1\\2\end{aligned}} \right)\\ &= {\bf{p}}\end{aligned}\)

02

Verify the equation

Substitute value in the equation \({{\bf{v}}_1} - {{\bf{v}}_2} + {{\bf{v}}_3} - {{\bf{v}}_4} = 0\).

\(\begin{aligned}{}10{{\bf{v}}_1} - 6{{\bf{v}}_2} + 7{{\bf{v}}_3} - 11{{\bf{v}}_4} &= 10\left( {\begin{aligned}{{}}{ - 1}\\0\end{aligned}} \right) - 6\left( {\begin{aligned}{{}}0\\3\end{aligned}} \right) + 7\left( {\begin{aligned}{{}}3\\1\end{aligned}} \right) - 11\left( {\begin{aligned}{{}}1\\{ - 1}\end{aligned}} \right)\\& = \left( {\begin{aligned}{{}}{ - 10 - 0 + 21 - 11}\\{0 - 18 + 7 + 11}\end{aligned}} \right)\\& = \left( {\begin{aligned}{{}}0\\0\end{aligned}} \right)\\& = {\bf{0}}\end{aligned}\)

From two steps, the sum of the coefficients is 0, so the combination is an affine dependence relationship. Both the given equations are valid.

03

Consider the coefficients of \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{3}}}\)

From the equations \({\rm{p}}\, = \frac{1}{{121}}{{\rm{v}}_1} + \frac{{72}}{{121}}{{\rm{v}}_2} + \frac{{37}}{{121}}{{\rm{v}}_3} + \frac{1}{{11}}{{\rm{v}}_4}\)and\(10{{\rm{v}}_1} - 6{{\rm{v}}_2} + 7{{\rm{v}}_3} - 11{{\rm{v}}_4} = 0\), the coefficients \({{\bf{v}}_1}\) and \({{\bf{v}}_2}\) are \(\frac{1}{{1210}}\) and \(\frac{{37}}{{847}}\).

Subtract \(\frac{1}{{1210}}\) times \(10{{\rm{v}}_1} - 6{{\rm{v}}_2} + 7{{\rm{v}}_3} - 11{{\rm{v}}_4} = 0\) from \({\rm{p}}\, = \frac{1}{{121}}{{\rm{v}}_1} + \frac{{72}}{{121}}{{\rm{v}}_2} + \frac{{37}}{{121}}{{\rm{v}}_3} + \frac{1}{{11}}{{\rm{v}}_4}\).

\(\begin{aligned}{}{\rm{p}} &= \frac{1}{{121}}{{\bf{v}}_1} + \frac{{72}}{{121}}{{\bf{v}}_2} + \frac{{37}}{{121}}{{\bf{v}}_3} + \frac{1}{{11}}{{\bf{v}}_4} - \frac{1}{{1210}}\left( {10{{\bf{v}}_1} - 6{{\bf{v}}_2} + 7{{\bf{v}}_3} - 11{{\bf{v}}_4}} \right)\\ &= \left( {\frac{1}{{121}} - \frac{1}{{121}}} \right){{\bf{v}}_1} + \left( {\frac{{72}}{{121}} + \frac{6}{{1210}}} \right){{\bf{v}}_2} + \left( {\frac{{37}}{{121}} - \frac{7}{{1210}}} \right){{\bf{v}}_3} + \left( {\frac{1}{{11}} + \frac{{11}}{{1210}}} \right){{\bf{v}}_4}\\ &= \left( 0 \right){{\bf{v}}_1} + \left( {\frac{3}{5}} \right){{\bf{v}}_2} + \left( {\frac{3}{{10}}} \right){{\bf{v}}_3} + \left( {\frac{1}{{10}}} \right){{\bf{v}}_4}\\ &= \frac{3}{5}{{\bf{v}}_2} + \frac{3}{{10}}{{\bf{v}}_3} + \frac{1}{{10}}{{\bf{v}}_4}\end{aligned}\)

Similarly, add \(\frac{1}{{1210}}\) times \(10{{\rm{v}}_1} - 6{{\rm{v}}_2} + 7{{\rm{v}}_3} - 11{{\rm{v}}_4} = 0\) from \({\rm{p}}\, = \frac{1}{{121}}{{\rm{v}}_1} + \frac{{72}}{{121}}{{\rm{v}}_2} + \frac{{37}}{{121}}{{\rm{v}}_3} + \frac{1}{{11}}{{\rm{v}}_4}\).

\(\begin{aligned}{}{\rm{p}}& = \frac{1}{{121}}{{\bf{v}}_1} + \frac{{72}}{{121}}{{\bf{v}}_2} + \frac{{37}}{{121}}{{\bf{v}}_3} + \frac{1}{{11}}{{\bf{v}}_4} + \frac{1}{{1210}}\left( {10{{\bf{v}}_1} - 6{{\bf{v}}_2} + 7{{\bf{v}}_3} - 11{{\bf{v}}_4}} \right)\\ &= \left( {\frac{1}{{121}} + \frac{{10}}{{121}}} \right){{\bf{v}}_1} + \left( {\frac{{72}}{{121}} - \frac{6}{{121}}} \right){{\bf{v}}_2} + \left( {\frac{{37}}{{121}} + \frac{7}{{121}}} \right){{\bf{v}}_3} + \left( {\frac{1}{{11}} - \frac{{11}}{{121}}} \right){{\bf{v}}_4}\\ &= \frac{1}{{11}}{{\bf{v}}_1} + \frac{6}{{11}}{{\bf{v}}_2} + \frac{4}{{11}}{{\bf{v}}_3}\end{aligned}\)

So, the expressions for pare\({\rm{p}} = \frac{3}{5}{{\bf{v}}_2} + \frac{3}{{10}}{{\bf{v}}_3} + \frac{1}{{10}}{{\bf{v}}_4}\)or \({\rm{p}} = \frac{1}{{11}}{{\bf{v}}_1} + \frac{6}{{11}}{{\bf{v}}_2} + \frac{4}{{11}}{{\bf{v}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 27. Give an example of a closed subset\(S\)of\({\mathbb{R}^{\bf{2}}}\)such that\({\rm{conv}}\,S\)is not closed.

Question: 17. Choose a set \(S\) of three points such that aff \(S\) is the plane in \({\mathbb{R}^3}\) whose equation is \({x_3} = 5\). Justify your work.

Question: 19. Let \(S\) be an affine subset of \({\mathbb{R}^n}\) , suppose \(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\)is a linear transformation, and let \(f\left( S \right)\) denote the set of images \(\left\{ {f\left( {\rm{x}} \right):{\rm{x}} \in S} \right\}\). Prove that \(f\left( S \right)\)is an affine subset of \({\mathbb{R}^m}\).

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

15. Sometimes only one-half of a Bezier curve needs further subdividing. For example, subdivision of the “left” side is accomplished with parts (a) and (c) of Exercise 13 and equation (8). When both halves of the curve \({\mathop{\rm x}\nolimits} \left( t \right)\) are divided, it is possible to organize calculations efficiently to calculate both left and right control points concurrently, without using equation (8) directly.

a. Show that the tangent vector \(y'\left( 1 \right)\) and \(z'\left( 0 \right)\) are equal.

b. Use part (a) to show that \({{\mathop{\rm q}\nolimits} _3}\) (which equals \({{\mathop{\rm r}\nolimits} _0}\)) is the midpoint of the segment from \({{\mathop{\rm q}\nolimits} _2}\) to \({{\mathop{\rm r}\nolimits} _1}\).

c. Using part (b) and the results of Exercises 13 and 14, write an algorithm that computes the control points for both \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) in an efficient manner. The only operations needed are sums and division by 2.

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let A be the \({\bf{1}} \times {\bf{5}}\) matrix \(\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{5}}&{ - {\bf{3}}}&{\bf{0}}&{\bf{6}}\end{array}} \right)\). Note that \({\bf{Nul}}\,\,A\) is in \({\mathbb{R}^{\bf{5}}}\). Let \(H = {\bf{Nul}}\,\,A\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free