TrueType fonts, created by Apple Computer and Adobe Systems, use quadratic Bezier curves, while PostScript fonts, created by Microsoft, use cubic Bezier curves. The cubic curves provide more flexibility for typeface design, but it is important to Microsoft that every typeface using quadratic curves can be transformed into one that used cubic curves. Suppose that \({\mathop{\rm w}\nolimits} \left( t \right)\) is a quadratic curve, with control points \({{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},\) and \({{\mathop{\rm p}\nolimits} _2}\).

  1. Find control points \({{\mathop{\rm r}\nolimits} _0},{{\mathop{\rm r}\nolimits} _1},{{\mathop{\rm r}\nolimits} _2},\), and \({{\mathop{\rm r}\nolimits} _3}\) such that the cubic Bezier curve \({\mathop{\rm x}\nolimits} \left( t \right)\) with these control points has the property that \({\mathop{\rm x}\nolimits} \left( t \right)\) and \({\mathop{\rm w}\nolimits} \left( t \right)\) have the same initial and terminal points and the same tangent vectors at \(t = 0\)and\(t = 1\). (See Exercise 16.)
  1. Show that if \({\mathop{\rm x}\nolimits} \left( t \right)\) is constructed as in part (a), then \({\mathop{\rm x}\nolimits} \left( t \right) = {\mathop{\rm w}\nolimits} \left( t \right)\) for \(0 \le t \le 1\).

Short Answer

Expert verified

a.The control points of \({{\mathop{\rm r}\nolimits} _0},{{\mathop{\rm r}\nolimits} _1},{{\mathop{\rm r}\nolimits} _2}\) and \({{\mathop{\rm r}\nolimits} _3}\) are \({{\mathop{\rm r}\nolimits} _0} = {{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm r}\nolimits} _1} = \frac{{{{\mathop{\rm p}\nolimits} _0} + 2{{\mathop{\rm p}\nolimits} _1}}}{3},{{\mathop{\rm r}\nolimits} _2} = \frac{{2{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}}}{3}\) and \({{\mathop{\rm r}\nolimits} _3} = {{\mathop{\rm p}\nolimits} _2}\).

b.It is proved that \({\mathop{\rm x}\nolimits} \left( t \right) = {\mathop{\rm w}\nolimits} \left( t \right)\).

Step by step solution

01

Determine the control points \({{\mathop{\rm r}\nolimits} _0},{{\mathop{\rm r}\nolimits} _1},{{\mathop{\rm r}\nolimits} _2},\) and \({{\mathop{\rm r}\nolimits} _3}\)

a)

The new control points are related to the original control points by simple formulas are\({{\mathop{\rm q}\nolimits} _0} = {{\mathop{\rm p}\nolimits} _0}\)and\({{\mathop{\rm r}\nolimits} _3} = {{\mathop{\rm p}\nolimits} _3}\).

It is given that the control points have the property that\({\mathop{\rm x}\nolimits} \left( t \right)\)and\({\mathop{\rm w}\nolimits} \left( t \right)\)have the same initial and terminal points and the same tangent vectors at\(t = 0\)and\(t = 1\).

Let\({\mathop{\rm w}\nolimits} \left( t \right)\)be a quadratic curve with control points\({{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},\)and\({{\mathop{\rm p}\nolimits} _2}\).

The standard parametric description of the curves for\(0 \le t \le 1\)as shown below

\({\mathop{\rm w}\nolimits} \left( t \right) = \left( {1 - 2t + {t^2}} \right){{\mathop{\rm p}\nolimits} _0} + 2t\left( {1 - t} \right){{\mathop{\rm p}\nolimits} _1} + {t^2}{{\mathop{\rm p}\nolimits} _2}\)

Differentiation of\({\mathop{\rm w}\nolimits} \left( t \right)\)and with\(t = 0\),\(t = 1\)as shown below

\(\begin{aligned}{}w'\left( t \right) = \left( { - 2 + 2t} \right){{\mathop{\rm p}\nolimits} _0} + \left( {2 - 4t} \right){{\mathop{\rm p}\nolimits} _1} + 2t{{\mathop{\rm p}\nolimits} _2}\\w'\left( 0 \right) = 2\left( {{{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _0}} \right)\\w'\left( 1 \right) = 2\left( {{{\mathop{\rm p}\nolimits} _2} - {{\mathop{\rm p}\nolimits} _1}} \right)\end{aligned}\)

Compute the control points of \({{\mathop{\rm r}\nolimits} _0},{{\mathop{\rm r}\nolimits} _1},{{\mathop{\rm r}\nolimits} _2}\) and \({{\mathop{\rm r}\nolimits} _3}\) as shown below:

\({{\mathop{\rm r}\nolimits} _0} = {{\mathop{\rm p}\nolimits} _0}\)

\({{\mathop{\rm r}\nolimits} _3} = {{\mathop{\rm p}\nolimits} _2}\)

\(\begin{aligned}{}3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) = w'\left( 0 \right)\left( {{\mathop{\rm since}\nolimits} \,\,\,{{\mathop{\rm r}\nolimits} _0} = {{\mathop{\rm p}\nolimits} _0}} \right)\\3{{\mathop{\rm r}\nolimits} _1} - 3{{\mathop{\rm p}\nolimits} _0} = 2\left( {{{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _0}} \right)\\3{{\mathop{\rm r}\nolimits} _1} = 2{{\mathop{\rm p}\nolimits} _1} - 2{{\mathop{\rm p}\nolimits} _0} + 3{{\mathop{\rm p}\nolimits} _0}\\{{\mathop{\rm r}\nolimits} _1} = \frac{{{{\mathop{\rm p}\nolimits} _0} + 2{{\mathop{\rm p}\nolimits} _1}}}{3}\end{aligned}\)

\(\begin{aligned}{}3\left( {{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2}} \right) = w'\left( 1 \right)\left( {{\mathop{\rm since}\nolimits} \,\,\,{{\mathop{\rm r}\nolimits} _3} = {{\mathop{\rm p}\nolimits} _2}} \right)\\3{{\mathop{\rm p}\nolimits} _{ 2}} - 3{{\mathop{\rm r}\nolimits} _2} = 2\left( {{{\mathop{\rm p}\nolimits} _2} - {{\mathop{\rm p}\nolimits} _1}} \right)\\3{{\mathop{\rm r}\nolimits} _2} = - 2{{\mathop{\rm p}\nolimits} _2} + 2{{\mathop{\rm p}\nolimits} _1} + 3{{\mathop{\rm p}\nolimits} _2}\\{{\mathop{\rm r}\nolimits} _2} = \frac{{2{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}}}{3}\end{aligned}\)

Thus, the control points of \({{\mathop{\rm r}\nolimits} _0},{{\mathop{\rm r}\nolimits} _1},{{\mathop{\rm r}\nolimits} _2}\) and \({{\mathop{\rm r}\nolimits} _3}\) are \({{\mathop{\rm r}\nolimits} _0} = {{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm r}\nolimits} _1} = \frac{{{{\mathop{\rm p}\nolimits} _0} + 2{{\mathop{\rm p}\nolimits} _1}}}{3},{{\mathop{\rm r}\nolimits} _2} = \frac{{2{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}}}{3}\) and \({{\mathop{\rm r}\nolimits} _3} = {{\mathop{\rm p}\nolimits} _2}\).

02

Show that if \({\mathop{\rm x}\nolimits} \left( t \right)\) is constructed as in part (a), then \({\mathop{\rm x}\nolimits} \left( t \right) = {\mathop{\rm w}\nolimits} \left( t \right)\)

Recall the midpoint of the original curve\({\mathop{\rm x}\nolimits} \left( t \right)\)occurs at\({\mathop{\rm x}\nolimits} \left( {.5} \right)\)when\({\mathop{\rm x}\nolimits} \left( t \right)\)has the standard parameterization

\({\mathop{\rm x}\nolimits} \left( t \right) = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\mathop{\rm p}\nolimits} _0} + \left( {3t - 6{t^2} + 3{t^3}} \right){{\mathop{\rm p}\nolimits} _1} + \left( {3{t^2} - 3{t^3}} \right){{\mathop{\rm p}\nolimits} _2} + {t^3}{{\mathop{\rm p}\nolimits} _3}\)……(7)

Rewrite the equation (7) with \({{\mathop{\rm r}\nolimits} _i}\) in place of \({{\mathop{\rm p}\nolimits} _i}\) for \(i = 0,...,3\) as shown below

\({\mathop{\rm x}\nolimits} \left( t \right) = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\mathop{\rm r}\nolimits} _0} + \left( {3t - 6{t^2} + 3{t^3}} \right){{\mathop{\rm r}\nolimits} _1} + \left( {3{t^2} - 3{t^3}} \right){{\mathop{\rm r}\nolimits} _2} + {t^3}{{\mathop{\rm r}\nolimits} _3}\)

Substitute \({{\mathop{\rm r}\nolimits} _0} = {{\mathop{\rm p}\nolimits} _0}\) and \({{\mathop{\rm r}\nolimits} _3} = {{\mathop{\rm p}\nolimits} _2}\) as shown below:

\({\mathop{\rm x}\nolimits} \left( t \right) = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\mathop{\rm p}\nolimits} _0} + \left( {3t - 6{t^2} + 3{t^3}} \right){{\mathop{\rm r}\nolimits} _1} + \left( {3{t^2} - 3{t^3}} \right){{\mathop{\rm r}\nolimits} _2} + {t^3}{{\mathop{\rm p}\nolimits} _2}\)

Use the control points of \({{\mathop{\rm r}\nolimits} _1}\) and \({{\mathop{\rm r}\nolimits} _2}\) from part (a) as shown below:

\(\begin{aligned}{}{\mathop{\rm x}\nolimits} \left( t \right) &= \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\mathop{\rm p}\nolimits} _0} + \left( {3t - 6{t^2} + 3{t^3}} \right)\left( {\frac{{{{\mathop{\rm p}\nolimits} _0} + 2{{\mathop{\rm p}\nolimits} _1}}}{3}} \right) + \left( {3{t^2} - 3{t^3}} \right)\left( {\frac{{2{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}}}{3}} \right) + {t^3}{{\mathop{\rm p}\nolimits} _2}\\ & = {{\mathop{\rm p}\nolimits} _0} - 3t{{\mathop{\rm p}\nolimits} _0} + 3{t^2}{{\mathop{\rm p}\nolimits} _0} - {t^3}{{\mathop{\rm p}\nolimits} _0} + 2{t^2}{{\mathop{\rm p}\nolimits} _1} + {t^2}{{\mathop{\rm p}\nolimits} _2} - 2{t^3}{{\mathop{\rm p}\nolimits} _1} - {t^3}{{\mathop{\rm p}\nolimits} _2} + t{{\mathop{\rm p}\nolimits} _0} + 2t{{\mathop{\rm p}\nolimits} _1} - 2{t^2}{{\mathop{\rm p}\nolimits} _0}\\ - 4{t^2}{{\mathop{\rm p}\nolimits} _1} + {t^3}{{\mathop{\rm p}\nolimits} _0} + 2{t^3}{{\mathop{\rm p}\nolimits} _1} + {t^3}{{\mathop{\rm p}\nolimits} _2}\\ & = {{\mathop{\rm p}\nolimits} _0} - 2t{{\mathop{\rm p}\nolimits} _0} + {t^2}{{\mathop{\rm p}\nolimits} _0} - 2{t^2}{{\mathop{\rm p}\nolimits} _1} + {t^2}{{\mathop{\rm p}\nolimits} _2} + 2t{{\mathop{\rm p}\nolimits} _1}\\ & = \left( {1 - 2t + {t^2}} \right){{\mathop{\rm p}\nolimits} _0} + \left( {2t - 2{t^2}} \right){{\mathop{\rm p}\nolimits} _1} + {t^2}{{\mathop{\rm p}\nolimits} _2}\\ & = {\left( {1 - t} \right)^2}{{\mathop{\rm p}\nolimits} _0} + 2t\left( {1 - t} \right){{\mathop{\rm p}\nolimits} _1} + {t^2}{{\mathop{\rm p}\nolimits} _2}\\ & = {\mathop{\rm w}\nolimits} \left( t \right)\end{aligned}\)

Thus, it is proved that \({\mathop{\rm x}\nolimits} \left( t \right) = {\mathop{\rm w}\nolimits} \left( t \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

3.\(\left( {\begin{aligned}{{}}1\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 2}\\{ - 4}\\8\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\{ - 1}\\{11}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{15}\\{ - 9}\end{aligned}} \right)\)

Question: 24. Repeat Exercise 23 for \({v_1} = \left( \begin{array}{l}1\\2\end{array} \right)\), \({v_2} = \left( \begin{array}{l}5\\1\end{array} \right)\), \({v_3} = \left( \begin{array}{l}4\\4\end{array} \right)\) and \(p = \left( \begin{array}{l}2\\3\end{array} \right)\).

Question: In Exercise 10, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

10. \(\left( {\begin{array}{*{20}{c}}1\\2\\0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\2\\{ - 1}\\{ - 3}\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\3\\2\\7\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\2\\{ - 1}\\{ - 1}\end{array}} \right)\)

Question: 30. Prove that the convex hull of a bounded set is bounded.

Question: 12. In Exercises 11 and 12, mark each statement True or False. Justify each answer.

a. If \(S = \left\{ {\bf{x}} \right\}\), then \({\rm{aff}}\,S\) is the empty set.

b. A set is affine if and only if it contains its affine hull.

c. A flat of dimension 1 is called a line.

d. A flat of dimension 2 is called a hyper plane.

e. A flat through the origin is a subspace.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free