Question:19.In Exercises 17–20, prove the given statement about subsets\(A\)and\(B\)of\({\mathbb{R}^n}\). A proof for an exercise may use results of earlier exercises.

19. a. \(\left( {\left( {{\rm{conv}}\,A} \right) \cup \left( {{\rm{conv}}\,B} \right)} \right) \subset {\rm{conv}}\left( {A \cup B} \right)\),

b. Find an example in\({\mathbb{R}^2}\)to show that equality need not hold in part

(a)

Short Answer

Expert verified
  1. It is shown that \(\left( {{\rm{conv}}\,A\,\, \cup {\rm{conv}}\,B} \right) \subset {\rm{conv}}\,\left( {{\rm{A}} \cup \,B} \right)\).
  2. \(A\) be the two adjacent corners of the square, and B be the other two corners of the square.

Step by step solution

01

(a) Step 1:Use the result of Exercise 18

It is known that\({\rm{conv}}\,A \subset {\rm{conv}}\,B\). Moreover, the combination of \(A\) or \(B\)must contains all the combinations of A.

Similarly, convex combinations of \(A\) must contain every convex combination of \(A\) or \(B\); that is,\({\rm{conv}}\,A \subset {\rm{conv}}\,\left( {{\rm{A}} \cup \,B} \right)\).

02

Step 2:Draw a conclusion

If \({\rm{conv}}\,A \subset {\rm{conv}}\,\left( {{\rm{A}} \cup \,B} \right)\) is true, then \(\left( {\left( {conv\,A} \right)U\left( {conv\,B} \right)} \right) \subset conv\left( {AUB} \right)\) must also be true as a convex combination of points ofA orconvex combination of points of \(B\), must contain some or all points of convex combinations of \(A\).

Thus,\(\left( {\left( {conv\,A} \right)U\left( {conv\,B} \right)} \right) \subset conv\left( {AUB} \right)\).

03

(b) Step 3:  Assume an example in \({\mathbb{R}^2}\) as a requirement

Consider a square and assume \(A\) be the two adjacent corners of the square, whereas B be the other two corners of the square.

Then, \({\rm{conv}}\,A\,\, \cup {\rm{conv}}\,B\) is a set of convex of \(A\) or convex of \(B\), which represents the opposite sides of the square, whereas \({\rm{conv}}\,\left( {A\,\, \cup \,B} \right)\) is the convex combination of points of \(A\) or \(B\) which represents the opposite sides of the perimeter of the square.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

14.a. Justify each equal sign:

\(3\left( {{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2}} \right) = z'\left( 1 \right) = .5x'\left( 1 \right) = \frac{3}{2}\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\)

b. Show that \({{\mathop{\rm r}\nolimits} _2}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _2}\) to \({{\mathop{\rm p}\nolimits} _3}\).

c. Justify each equal sign: \(3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) = z'\left( 0 \right) = .5x'\left( {.5} \right)\).

d. Use part (c) to show that \(8{{\mathop{\rm r}\nolimits} _1} = - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + 8{{\mathop{\rm r}\nolimits} _0}\).

e. Use part (d) equation (8), and part (a) to show that \({{\mathop{\rm r}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm r}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\). That is, \({{\mathop{\rm r}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm r}\nolimits} _2} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

Let\({v_1} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{4}}\end{array}} \right]\),\({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{0}}\end{array}} \right]\), and let\(S = \left\{ {{v_1},{v_2},{v_3}} \right\}\).

  1. Show that the set is affinely independent.
  2. Find the barycentric coordinates of\({p_1} = \left[ {\begin{array}{*{20}{c}}2\\3\end{array}} \right]\),\({p_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\end{array}} \right]\),\({p_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\{\bf{1}}\end{array}} \right]\),\({p_{\bf{4}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{1}}}\end{array}} \right]\), and\({p_{\bf{5}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{1}}\end{array}} \right]\), with respect to S.
  3. Let\(T\)be the triangle with vertices\({v_1}\),\({v_{\bf{2}}}\), and\({v_{\bf{3}}}\). When the sides of\(T\)are extended, the lines divide\({\mathbb{R}^{\bf{2}}}\)into seven regions. See Figure 8. Note the signs of the barycentric coordinates of the points in each region. For example,\({{\bf{p}}_{\bf{5}}}\)is inside the triangle\(T\)and all its barycentric coordinates are positive. Point\({{\bf{p}}_{\bf{1}}}\)has coordinates\(\left( { - , + , + } \right)\). Its third coordinate is positive because\({{\bf{p}}_{\bf{1}}}\)is on the\({{\bf{v}}_{\bf{3}}}\)side of the line through\({{\bf{v}}_{\bf{1}}}\)and\({{\bf{v}}_{\bf{2}}}\). Its first coordinate is negative because\({{\bf{p}}_{\bf{1}}}\)is opposite the\({{\bf{v}}_{\bf{1}}}\)side of the line through\({{\bf{v}}_{\bf{2}}}\)and\({{\bf{v}}_{\bf{3}}}\). Point\({{\bf{p}}_{\bf{2}}}\)is on the\({{\bf{v}}_{\bf{2}}}{{\bf{v}}_{\bf{3}}}\)edge of\(T\). Its coordinates are\(\left( {0, + , + } \right)\). Without calculating the actual values, determine the signs of the barycentric coordinates of points\({{\bf{p}}_{\bf{6}}}\),\({{\bf{p}}_{\bf{7}}}\), and\({{\bf{p}}_{\bf{8}}}\)as shown in Figure 8.

The parametric vector form of a B-spline curve was defined in the Practice Problems as

\({\bf{x}}\left( t \right) = \frac{1}{6}\left[ \begin{array}{l}{\left( {1 - t} \right)^3}{{\bf{p}}_o} + \left( {3t{{\left( {1 - t} \right)}^2} - 3t + 4} \right){{\bf{p}}_1}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left( {3{t^2}\left( {1 - t} \right) + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}\end{array} \right]\;\), for \(0 \le t \le 1\) where \({{\bf{p}}_o}\) , \({{\bf{p}}_1}\), \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\) are the control points.

a. Show that for \(0 \le t \le 1\), \({\bf{x}}\left( t \right)\) is in the convex hull of the control points.

b. Suppose that a B-spline curve \({\bf{x}}\left( t \right)\)is translated to \({\bf{x}}\left( t \right) + {\bf{b}}\) (as in Exercise 1). Show that this new curve is again a B-spline.

Question: 19. Let \(S\) be an affine subset of \({\mathbb{R}^n}\) , suppose \(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\)is a linear transformation, and let \(f\left( S \right)\) denote the set of images \(\left\{ {f\left( {\rm{x}} \right):{\rm{x}} \in S} \right\}\). Prove that \(f\left( S \right)\)is an affine subset of \({\mathbb{R}^m}\).

Question: 17. Choose a set \(S\) of three points such that aff \(S\) is the plane in \({\mathbb{R}^3}\) whose equation is \({x_3} = 5\). Justify your work.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free