In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{2}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{2}}}\\{\bf{2}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{\bf{4}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{4}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{7}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{\bf{5}}\\{\bf{3}}\end{aligned}} \right)\)

Short Answer

Expert verified

The affine combination is \({\bf{y}} = 2{{\bf{v}}_1} - \frac{3}{2}{{\bf{v}}_2} + \frac{1}{2}{{\bf{v}}_3}\).

Step by step solution

01

Find the translated point

Write the translated points as shown below:

\({{\bf{v}}_2} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}{ - 3}\\0\end{aligned}} \right)\)

\({{\bf{v}}_3} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right)\)

\({{\bf{v}}_4} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}2\\5\end{aligned}} \right)\)

\({\bf{y}} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}4\\1\end{aligned}} \right)\)

Write the equation by using the translated matrix as shown below:

\(\begin{aligned}{c}{\bf{y}} - {{\bf{v}}_1} &= {c_2}\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + {c_3}\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right) + {c_4}\left( {{{\bf{v}}_4} - {{\bf{v}}_1}} \right)\\\left( {\begin{aligned}{*{20}{c}}4\\1\end{aligned}} \right) &= {c_2}\left( {\begin{aligned}{*{20}{c}}{ - 3}\\0\end{aligned}} \right) + {c_3}\left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right) + {c_4}\left( {\begin{aligned}{*{20}{c}}2\\5\end{aligned}} \right)\end{aligned}\)

02

Write the augmented matrix

The augmented matrixcan be written as shown below:

\(M = \left( {\begin{aligned}{*{20}{c}}{ - 3}&{ - 1}&2&4\\0&2&5&1\end{aligned}} \right)\)

Row reduce the augmented matrix as shown below:

\(\begin{aligned}{c}M &= \left( {\begin{aligned}{*{20}{c}}{ - 3}&{ - 1}&2&4\\0&2&5&1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}1&{ - 1}&2&4\\0&2&5&1\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{C_1} \to \frac{{{C_1}}}{3}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}1&{\frac{1}{3}}&{ - \frac{2}{3}}&{ - \frac{4}{3}}\\0&1&{ - \frac{5}{2}}&{\frac{1}{2}}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to - \frac{1}{3}{R_1},\,{R_2} \to \frac{1}{2}{R_2}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}1&0&{ - \frac{9}{6}}&{ - \frac{9}{6}}\\0&1&{\frac{5}{2}}&{\frac{1}{2}}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to {R_1} - \frac{1}{3}{R_2}} \right)\\ &= \left( {\begin{aligned}{*{20}{c}}1&0&{ - \frac{3}{2}}&{ - \frac{3}{2}}\\0&1&{\frac{5}{2}}&{\frac{1}{2}}\end{aligned}} \right)\end{aligned}\)

03

Write the system of equations

From the augmented matrix, the system of equation is shown below:

\(\begin{aligned}{c}{c_2} - \frac{3}{4}{c_4} &= - \frac{3}{2}\\{c_2} &= \frac{3}{2}{c_4} - \frac{3}{2}\end{aligned}\)

Let \({c_4} = 0\). Thus the value is shown below:

\({c_2} = - \frac{3}{2}\)and \({c_3} = \frac{1}{2}\)

Substitute the values in the equation of translated point as shown below:

\(\begin{aligned}{c}{\bf{y}} - {{\bf{v}}_1} &= - \frac{3}{2}\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + \frac{1}{2}\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right) + 0\left( {{{\bf{v}}_4} - {{\bf{v}}_1}} \right)\\{\bf{y}} &= {{\bf{v}}_1} - \frac{3}{2}{{\bf{v}}_2} + \frac{3}{2}{{\bf{v}}_1} + \frac{1}{2}{{\bf{v}}_3} - \frac{1}{2}{{\bf{v}}_1}\\{\bf{y}} &= 2{{\bf{v}}_1} - \frac{3}{2}{{\bf{v}}_2} + \frac{1}{2}{{\bf{v}}_3}\end{aligned}\)

So, the vector \({\bf{y}}\) is \(2{{\bf{v}}_1} - \frac{3}{2}{{\bf{v}}_2} + \frac{1}{2}{{\bf{v}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find an example in \({\mathbb{R}^2}\) to show that equality need not hold in the statement of Exercise 25.

TrueType fonts, created by Apple Computer and Adobe Systems, use quadratic Bezier curves, while PostScript fonts, created by Microsoft, use cubic Bezier curves. The cubic curves provide more flexibility for typeface design, but it is important to Microsoft that every typeface using quadratic curves can be transformed into one that used cubic curves. Suppose that \({\mathop{\rm w}\nolimits} \left( t \right)\) is a quadratic curve, with control points \({{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},\) and \({{\mathop{\rm p}\nolimits} _2}\).

  1. Find control points \({{\mathop{\rm r}\nolimits} _0},{{\mathop{\rm r}\nolimits} _1},{{\mathop{\rm r}\nolimits} _2},\), and \({{\mathop{\rm r}\nolimits} _3}\) such that the cubic Bezier curve \({\mathop{\rm x}\nolimits} \left( t \right)\) with these control points has the property that \({\mathop{\rm x}\nolimits} \left( t \right)\) and \({\mathop{\rm w}\nolimits} \left( t \right)\) have the same initial and terminal points and the same tangent vectors at \(t = 0\)and\(t = 1\). (See Exercise 16.)
  1. Show that if \({\mathop{\rm x}\nolimits} \left( t \right)\) is constructed as in part (a), then \({\mathop{\rm x}\nolimits} \left( t \right) = {\mathop{\rm w}\nolimits} \left( t \right)\) for \(0 \le t \le 1\).

Show that a set\(\left\{ {{{\bf{v}}_{\bf{1}}},...,{{\bf{v}}_p}} \right\}\)in\({\mathbb{R}^{\bf{n}}}\)is affinely dependent when \(p \ge n + 2\).

Question: In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{array}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{array}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each is given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{ - {\bf{19}}}\\{\bf{5}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{{\bf{1}}.{\bf{5}}}\\{ - {\bf{1}}.{\bf{3}}}\\{ - .{\bf{5}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{4}}}\\{\bf{0}}\end{array}} \right)\)

Questions: Let \({F_{\bf{1}}}\) and \({F_{\bf{2}}}\) be 4-dimensional flats in \({\mathbb{R}^{\bf{6}}}\), and suppose that \({F_{\bf{1}}} \cap {F_{\bf{2}}} \ne \phi \). What are the possible dimension of \({F_{\bf{1}}} \cap {F_{\bf{2}}}\)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free