In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

1.\(\left( {\begin{aligned}{{}}3\\{ - 3}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\6\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\0\end{aligned}} \right)\)

Short Answer

Expert verified

The set of points is affinely dependent, and the relation is \(2{{\mathop{\rm v}\nolimits} _1} + {{\mathop{\rm v}\nolimits} _2} - 3{{\mathop{\rm v}\nolimits} _3} = 0\).

Step by step solution

01

Condition for affinely dependent

The set is said to be affinely dependent, if the set \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},...,{{\bf{v}}_p}} \right\}\) in the dimension\({\mathbb{R}^n}\) exists such that \({c_1},{c_2},...,{c_p}\) not all zero, and the sum must be zero \({c_1} + {c_2} + ... + {c_p} = 0\), and \({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + ... + {c_p}{{\bf{v}}_p} = 0\).

02

Step 2:Compute \({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}\)

Let \({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}3\\{ - 3}\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{aligned}{{}}0\\6\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{aligned}{{}}2\\0\end{aligned}} \right)\).

Compute translated points \({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}\)as shown below:

\({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}{ - 3}\\9\end{aligned}} \right)\),

\({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}{ - 1}\\3\end{aligned}} \right)\)

It is observed that two points are multiples of each other.

03

Determine whether the set of points is affinely dependent

Theorem 5states that an indexed set \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) in \({\mathbb{R}^n}\), with \(p \ge 2\), the following statement is equivalent. This means that either all the statements are true or all the statements are false.

  1. The set \(S\) isaffinely dependent.
  2. Each of the points in \(S\)is an affine combination of the other points in \(S\).
  3. In \({\mathbb{R}^n}\), the set \(\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _1}} \right\}\)is linearly dependent.
  4. The set \(\left\{ {{{\bar v}_1},...,{{\bar v}_p}} \right\}\) of homogeneous forms in \({\mathbb{R}^{n + 1}}\) is linearly dependent.

Since two points are multiples of each other hence form a linearly dependent set.

Therefore, all statements in theorem 5 are true and thus \(S\) are affinely dependent.

\(\begin{aligned}{}{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1} = 3\left( {{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}} \right)\\{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1} = 3{{\mathop{\rm v}\nolimits} _3} - 3{{\mathop{\rm v}\nolimits} _1}\\2{{\mathop{\rm v}\nolimits} _1} + {{\mathop{\rm v}\nolimits} _2} - 3{{\mathop{\rm v}\nolimits} _3} = 0\end{aligned}\)

Thus, the set of points is affinely dependent and \(2{{\mathop{\rm v}\nolimits} _1} + {{\mathop{\rm v}\nolimits} _2} - 3{{\mathop{\rm v}\nolimits} _3} = 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{0}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{6}}}\\{\bf{7}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{\bf{3}}\\{\bf{1}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{4}}\\{ - {\bf{4}}}\end{aligned}} \right)\)

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

14.a. Justify each equal sign:

\(3\left( {{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2}} \right) = z'\left( 1 \right) = .5x'\left( 1 \right) = \frac{3}{2}\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\)

b. Show that \({{\mathop{\rm r}\nolimits} _2}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _2}\) to \({{\mathop{\rm p}\nolimits} _3}\).

c. Justify each equal sign: \(3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) = z'\left( 0 \right) = .5x'\left( {.5} \right)\).

d. Use part (c) to show that \(8{{\mathop{\rm r}\nolimits} _1} = - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + 8{{\mathop{\rm r}\nolimits} _0}\).

e. Use part (d) equation (8), and part (a) to show that \({{\mathop{\rm r}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm r}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\). That is, \({{\mathop{\rm r}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm r}\nolimits} _2} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

The conditions for affine dependence are stronger than those for linear dependence, so an affinely dependent set is automatically linearly dependent. Also, a linearly independent set cannot be affinely dependent and therefore must be affinely independent. Construct two linearly dependent indexed sets\({S_{\bf{1}}}\)and\({S_{\bf{2}}}\)in\({\mathbb{R}^2}\)such that\({S_{\bf{1}}}\)is affinely dependent and\({S_{\bf{2}}}\)is affinely independent. In each case, the set should contain either one, two, or three nonzero points.

In Exercises 21–24, a, b, and c are noncollinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \)and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

23. Let p be any point in the interior of\(\Delta {\bf{abc}}\), with barycentric coordinates\(\left( {r,s,t} \right)\), so that

\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\left[ {\begin{array}{*{20}{c}}r\\s\\t\end{array}} \right] = \widetilde {\bf{p}}\)

Use Exercise 21 and a fact about determinants (Chapter 3) to show that

\(r = \left( {area of \Delta pbc} \right)/\left( {area of \Delta abc} \right)\)

\(s = \left( {area of \Delta apc} \right)/\left( {area of \Delta abc} \right)\)

\(t = \left( {area of \Delta abp} \right)/\left( {area of \Delta abc} \right)\)

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

9.

a. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1} - {{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _2},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _2}} \right\}\) is linearly dependent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent. (Read this carefully.)

b. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set of homogeneous forms \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent.

c. A finite set of points \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is affinely dependent if there exist real numbers \({c_1},...,{c_k}\) , not all zero, such that \({c_1} + ... + {c_k} = 1\) and \({c_1}{{\mathop{\rm v}\nolimits} _1} + ... + {c_k}{{\mathop{\rm v}\nolimits} _k} = 0\).

d. If \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely independent set in \({\mathbb{R}^n}\) and if p in \({\mathbb{R}^n}\) has a negative barycentric coordinate determined by S, then p is not in \({\mathop{\rm aff}\nolimits} S\).

e.

If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},a,\) and \(b\) are in \({\mathbb{R}^3}\) and if ray \({\mathop{\rm a}\nolimits} + t{\mathop{\rm b}\nolimits} \) for \(t \ge 0\) intersects the triangle with vertices \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},\) and \({{\mathop{\rm v}\nolimits} _3}\) then the barycentric coordinates of the intersection points are all nonnegative.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free