Question 1: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\3\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right)\) in \({\mathbb{R}^2}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a.\(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 3{x_1} + {x_2}\)

Short Answer

Expert verified
  1. \({{\mathop{\rm p}\nolimits} _1}\) is the point in \(S\) at which \(m = 1\).
  2. \({{\mathop{\rm p}\nolimits} _2}\)is the point in \(S\) at which \(m = 5\).
  3. \({{\mathop{\rm p}\nolimits} _3}\) is the point in \(S\) at which \(m = 5\).

Step by step solution

01

The maximum and minimum is attained at an extreme point

Theorem 16states that considered \(f\) as a linear functional defined on a nonempty compact convex set \(S\).

Then there are extreme points \(\widehat {\mathop{\rm v}\nolimits} \) and \(\widehat {\mathop{\rm w}\nolimits} \) of \(S\) such that \(f\left( {\widehat {\mathop{\rm v}\nolimits} } \right) = \mathop {\max }\limits_{{\mathop{\rm v}\nolimits} \in S} f\left( {\mathop{\rm v}\nolimits} \right)\) and \(f\left( {\widehat {\mathop{\rm w}\nolimits} } \right) = \mathop {\min }\limits_{{\mathop{\rm v}\nolimits} \in S} f\left( {\mathop{\rm v}\nolimits} \right)\).

02

Determine the maximum value \(m\) of \(f\)

According to theorem 16, the maximum value is attained at one of the extreme points of \(S\).

Evaluate f at the extreme point and select the largest value to find \(m\) as shown below:

  1. \({f_1}\left( {{{\mathop{\rm p}\nolimits} _1}} \right) = 1\), \({f_1}\left( {{{\mathop{\rm p}\nolimits} _2}} \right) = - 1\), \({f_1}\left( {{{\mathop{\rm p}\nolimits} _3}} \right) = - 3\), therefore, \({m_1} = 1\). Graph the line \({f_1}\left( {{x_1},{x_2}} \right) = {m_1}\) which means that \({x_1} - {x_2} = 1\), and \({\mathop{\rm x}\nolimits} = {{\mathop{\rm p}\nolimits} _1}\) is the only point in \(S\) at which \({f_1}\left( {\mathop{\rm x}\nolimits} \right) = 1\).


b. \({f_2}\left( {{{\mathop{\rm p}\nolimits} _1}} \right) = 1\), \({f_2}\left( {{{\mathop{\rm p}\nolimits} _2}} \right) = 5\), \({f_2}\left( {{{\mathop{\rm p}\nolimits} _3}} \right) = 1\), therefore, \({m_2} = 5\). Graph the line \({f_2}\left( {{x_1},{x_2}} \right) = {m_2}\) which means that \({x_1} + {x_2} = 5\), and \({\mathop{\rm x}\nolimits} = {{\mathop{\rm p}\nolimits} _2}\) is the only point in \(S\) at which \({f_2}\left( {\mathop{\rm x}\nolimits} \right) = 5\).


c. \({f_3}\left( {{{\mathop{\rm p}\nolimits} _1}} \right) = - 3\), \({f_3}\left( {{{\mathop{\rm p}\nolimits} _2}} \right) = - 3\), \({f_3}\left( {{{\mathop{\rm p}\nolimits} _3}} \right) = 5\), therefore, \({m_3} = 5\). Graph the line \({f_3}\left( {{x_1},{x_2}} \right) = {m_3}\) which means that \( - 3{x_1} + {x_2} = 5\), and \({\mathop{\rm x}\nolimits} = {{\mathop{\rm p}\nolimits} _3}\) is the only point in \(S\) at which \({f_3}\left( {\mathop{\rm x}\nolimits} \right) = 5\).


Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Let \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{3}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{ - {\bf{1}}}\\{\bf{3}}\end{array}} \right)\), \({{\bf{n}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{4}}\\{\bf{2}}\end{array}} \right)\), and \({{\bf{n}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{3}}\\{\bf{1}}\\{\bf{5}}\end{array}} \right)\), let \({H_{\bf{1}}}\) be the hyperplane in \({\mathbb{R}^{\bf{4}}}\) through \({{\bf{p}}_{\bf{1}}}\) with normal \({{\bf{n}}_{\bf{1}}}\), and let \({H_{\bf{2}}}\) be the hyperplane through \({{\bf{p}}_{\bf{2}}}\) with normal \({{\bf{n}}_{\bf{2}}}\). Give an explicit description of \({H_{\bf{1}}} \cap {H_{\bf{2}}}\). (Hint: Find a point p in \({H_{\bf{1}}} \cap {H_{\bf{2}}}\) and two linearly independent vectors \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) that span a subspace parallel to the 2-dimensional flat \({H_{\bf{1}}} \cap {H_{\bf{2}}}\).)

Question: 23. Let \({{\bf{v}}_1} = \left( \begin{array}{l}1\\1\end{array} \right)\), \({{\bf{v}}_2} = \left( \begin{array}{l}3\\0\end{array} \right)\), \({{\bf{v}}_3} = \left( \begin{array}{l}5\\3\end{array} \right)\) and \({\bf{p}} = \left( \begin{array}{l}4\\1\end{array} \right)\). Find a hyperplane \(f:d\) (in this case, a line) that strictly separates \({\bf{p}}\) from \({\rm{conv}}\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\).

In Exercises 21-26, prove the given statement about subsets A and B of \({\mathbb{R}^n}\), or provide the required example in \({\mathbb{R}^2}\). A proof for an exercise may use results from earlier exercises (as well as theorems already available in the text).

21. If \(A \subset B\), then B is affine, then \({\mathop{\rm aff}\nolimits} A \subset B\).

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

6.\(\left( {\begin{aligned}{{}}1\\3\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{ - 1}\\{ - 2}\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\5\\2\end{aligned}} \right),\left( {\begin{aligned}{{}}3\\5\\0\end{aligned}} \right)\)

The “B” in B-spline refers to the fact that a segment \({\bf{x}}\left( t \right)\)may be written in terms of a basis matrix, \(\,{M_S}\) , in a form similar to a Bézier curve. That is,

\({\bf{x}}\left( t \right) = G{M_S}{\bf{u}}\left( t \right)\)for \(\,0 \le t \le 1\)

where \(G\) is the geometry matrix \(\,\left( {{{\bf{p}}_{\bf{0}}}\,\,\,\,{{\bf{p}}_{{\bf{1}}\,\,\,}}\,{{\bf{p}}_{\bf{2}}}\,\,\,{{\bf{p}}_{\bf{3}}}} \right)\)and \({\bf{u}}\left( {\bf{t}} \right)\) is the column vector \(\left( {1,\,\,t,\,\,{t^2},\,{t^3}} \right)\) . In a uniform B-spline, each segment uses the same basis matrix \(\,{M_S}\), but the geometry matrix changes. Construct the basis matrix \(\,{M_S}\) for \({\bf{x}}\left( t \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free