Question: 1. Let Lbe the line in \({\mathbb{R}^{\bf{2}}}\) through the points \(\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{4}}\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\end{array}} \right)\). Find a linear functional f and a real number d such that \(L = \left( {f:d} \right)\).

Short Answer

Expert verified

The linear functional is \(f\left( {x,y} \right) = 3x + 4y\), and a real number \(d = 13\) such that \(L = \left( {f:d} \right)\).

Step by step solution

01

Find the line equation

The given two points are \(\left( {\begin{array}{*{20}{c}}{ - 1}\\4\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}3\\1\end{array}} \right)\). Take \({x_1} = - 1,{\rm{ }}{y_1} = 4\), and \({x_2} = 3,{\rm{ }}{y_2} = 1\).

The line equation is given by,

\(\begin{array}{c}\frac{{y - {y_1}}}{{{y_2} - {y_1}}} = \frac{{x - {x_1}}}{{{x_2} - {x_1}}}\\\frac{{y - 4}}{{1 - 4}} = \frac{{x + 1}}{{3 + 1}}\\4y - 16 = - 3x - 3\\3x + 4y = 13\end{array}\)

02

Find the linear functional f

From the above equation, take the linear functional as \(f\left( {x,y} \right) = 3x + 4y\).

03

Conclusion

The line Lcan be written as shown below:

\(\begin{array}{c}L = \left\{ {x \in {\mathbb{R}^2}:3x + 4y = 13} \right\}\\ = \left\{ {x \in {\mathbb{R}^2}:f\left( {x,y} \right) = 13} \right\}\\L = \left( {f:13} \right)\end{array}\)

Thus, the linear function is \(f\left( {x,y} \right) = 3x + 4y\), and a real number \(d = 13\) such that \(L = \left( {f:d} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Repeat Exercise 7 when

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{ - {\bf{2}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{6}}\\{ - {\bf{5}}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{0}}\\{{\bf{12}}}\\{ - {\bf{6}}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{1}}}\\{{\bf{15}}}\\{ - {\bf{7}}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{5}}}\\{\bf{3}}\\{ - {\bf{8}}}\\{\bf{6}}\end{array}} \right)\), and \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{6}}\\{ - {\bf{6}}}\\{ - {\bf{8}}}\end{array}} \right)\)

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let A be the \({\bf{1}} \times {\bf{4}}\) matrix \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{3}}}&{\bf{4}}&{ - {\bf{2}}}\end{array}} \right)\) and let \(b = {\bf{5}}\). Let \(H = \left\{ {{\bf{x}}\,\,{\rm{in}}\,{\mathbb{R}^{\bf{4}}}:A{\bf{x}} = {\bf{b}}} \right\}\).

Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) and \({\mathop{\rm x}\nolimits} \ge 0\).

6. \(A = \left( {\begin{array}{*{20}{c}}2&3\\4&1\end{array}} \right),{\rm{ }}{\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}{18}\\{16}\end{array}} \right)\)

Question: In Exercise 3, determine whether each set is open or closed or neither open nor closed.

3. a. \(\left\{ {\left( {x,y} \right):y > {\bf{0}}} \right\}\)

b. \(\left\{ {\left( {x,y} \right):x = {\bf{2}}\,\,\,and\,\,{\bf{1}} \le y \le {\bf{3}}} \right\}\)

c. \(\left\{ {\left( {x,y} \right):x = {\bf{2}}\,\,\,and\,\,{\bf{1}} < y < {\bf{3}}} \right\}\)

d. \(\left\{ {\left( {x,y} \right):xy = {\bf{1}}\,\,\,and\,\,x > {\bf{0}}} \right\}\)

e. \(\left\{ {\left( {x,y} \right):xy \ge {\bf{1}}\,\,\,and\,\,x > {\bf{0}}} \right\}\)

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

14.a. Justify each equal sign:

\(3\left( {{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2}} \right) = z'\left( 1 \right) = .5x'\left( 1 \right) = \frac{3}{2}\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\)

b. Show that \({{\mathop{\rm r}\nolimits} _2}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _2}\) to \({{\mathop{\rm p}\nolimits} _3}\).

c. Justify each equal sign: \(3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) = z'\left( 0 \right) = .5x'\left( {.5} \right)\).

d. Use part (c) to show that \(8{{\mathop{\rm r}\nolimits} _1} = - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + 8{{\mathop{\rm r}\nolimits} _0}\).

e. Use part (d) equation (8), and part (a) to show that \({{\mathop{\rm r}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm r}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\). That is, \({{\mathop{\rm r}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm r}\nolimits} _2} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free