Let \({{\bf{p}}_o}\) , \({{\bf{p}}_1}\) and \({{\bf{p}}_2}\) be points in \({\mathbb{R}^n}\) , and define \({{\bf{f}}_{\bf{0}}}\left( t \right) = \left( {1 - t} \right){{\bf{p}}_{\bf{0}}} + t{{\bf{p}}_{\bf{1}}}\), \({{\bf{f}}_1}\left( t \right) = \left( {1 - t} \right){{\bf{p}}_1} + t{{\bf{p}}_2}\) and \({\bf{g}}\left( t \right) = \left( {1 - t} \right){{\bf{f}}_0}\left( t \right) + t{{\bf{f}}_1}\left( t \right)\)for \(0 \le t \le 1\). For the points as shown below, draw a picture that shows \({{\bf{f}}_0}\left( {\frac{1}{2}} \right)\), \({{\bf{f}}_1}\left( {\frac{1}{2}} \right)\), and \({\bf{g}}\left( {\frac{1}{2}} \right)\).

Short Answer

Expert verified

The diagram is shown below:

Step by step solution

01

Describe the given information

It is given that \({{\rm{p}}_0},{{\rm{p}}_1},{{\rm{p}}_2} \in {\mathbb{R}^n}\). Also,\({{\rm{f}}_0}\left( t \right) = \left( {1 - t} \right){{\rm{p}}_0} + t{{\rm{p}}_1}\), \({{\rm{f}}_1}\left( t \right) = \left( {1 - t} \right){{\rm{p}}_1} + t{{\rm{p}}_2}\)and \({\rm{g}}\left( t \right) = \left( {1 - t} \right){{\rm{f}}_0}\left( t \right) + t{{\rm{f}}_1}\left( t \right)\).The graph of\({{\rm{f}}_0}\left( {\frac{1}{2}} \right)\),\({{\rm{f}}_1}\left( {\frac{1}{2}} \right)\) and\({\rm{g}}\left( {\frac{1}{2}} \right)\) is to be drawn.

02

Step 2:Find the values of\({{\rm{f}}_0}\left( {\frac{1}{2}} \right)\),\({{\rm{f}}_1}\left( {\frac{1}{2}} \right)\) and\({\rm{g}}\left( {\frac{1}{2}} \right)\)

The values of \({{\rm{f}}_0}\left( {\frac{1}{2}} \right)\),\({{\rm{f}}_1}\left( {\frac{1}{2}} \right)\) and\({\rm{g}}\left( {\frac{1}{2}} \right)\)are calculated as shown below:

\(\begin{aligned}{}{{\rm{f}}_0}\left( {\frac{1}{2}} \right) &= \left( {1 - \frac{1}{2}} \right){{\rm{p}}_0} + \frac{1}{2}{{\rm{p}}_1}\\ &= \frac{1}{2}{{\rm{p}}_0} + \frac{1}{2}{{\rm{p}}_1}\\ &= \frac{1}{2}\left( {{{\rm{p}}_0} + {{\rm{p}}_1}} \right)\end{aligned}\)

It shows that\({{\rm{f}}_0}\left( {\frac{1}{2}} \right)\)is at the midline formed by the points\({{\rm{p}}_0}{\rm{, }}{{\rm{p}}_1}\).

\(\begin{aligned}{}{{\rm{f}}_1}\left( {\frac{1}{2}} \right) &= \left( {1 - \frac{1}{2}} \right){{\rm{p}}_1} + \frac{1}{2}{{\rm{p}}_2}\\ &= \frac{1}{2}{{\rm{p}}_1} + \frac{1}{2}{{\rm{p}}_2}\\ &= \frac{1}{2}\left( {{{\rm{p}}_1} + {{\rm{p}}_2}} \right)\end{aligned}\)

It shows that \({{\rm{f}}_1}\left( {\frac{1}{2}} \right)\)is at the midline formed by the points\({{\rm{p}}_1}{\rm{, }}{{\rm{p}}_2}\).

\(\begin{aligned}{}{\rm{g}}\left( {\frac{1}{2}} \right) &= \left( {1 - \frac{1}{2}} \right){{\rm{f}}_0}\left( {\frac{1}{2}} \right) + \frac{1}{2}{{\rm{f}}_1}\left( {\frac{1}{2}} \right)\\ &= \frac{1}{2}{{\rm{f}}_0}\left( {\frac{1}{2}} \right) + \frac{1}{2}{{\rm{f}}_1}\left( {\frac{1}{2}} \right)\\\frac{1}{2}\left( {{{\rm{f}}_0}\left( {\frac{1}{2}} \right) + {{\rm{f}}_1}\left( {\frac{1}{2}} \right)} \right)\end{aligned}\)

It shows that \({\rm{g}}\left( {\frac{1}{2}} \right)\) is at the midline formed by the points of \({{\rm{f}}_0}\left( {\frac{1}{2}} \right)\),\({{\rm{f}}_1}\left( {\frac{1}{2}} \right)\).

03

Step 3:Draw the diagram

Draw lines joining\({{\rm{p}}_0}{\rm{, }}{{\rm{p}}_1}\), then\({{\rm{p}}_1}{\rm{, }}{{\rm{p}}_2}\),such that\({{\rm{f}}_0}\left( {\frac{1}{2}} \right)\),\({{\rm{f}}_1}\left( {\frac{1}{2}} \right)\)bisects them respectively. Afterward, the value of\({\rm{g}}\left( {\frac{1}{2}} \right)\)is at the mid of the line joining\({{\rm{f}}_0}\left( {\frac{1}{2}} \right)\),\({{\rm{f}}_1}\left( {\frac{1}{2}} \right)\). Thus, the diagram is shown below:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

3.\(\left( {\begin{aligned}{{}}1\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 2}\\{ - 4}\\8\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\{ - 1}\\{11}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{15}\\{ - 9}\end{aligned}} \right)\)

Use only the definition of affine dependence to show that anindexed set \(\left\{ {{v_1},{v_2}} \right\}\) in \({\mathbb{R}^{\bf{n}}}\) is affinely dependent if and only if \({v_1} = {v_2}\).

Question 2: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}0\\{ - 1}\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\1\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right)\) in \({\mathbb{R}^{\bf{2}}}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 2{x_1} + {x_2}\)

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the column space of the matrix \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{5}}&{\bf{2}}\\{ - {\bf{4}}}&{ - {\bf{4}}}\end{array}} \right)\). That is, \(H = {\bf{Col}}\,B\).(Hint: How is \({\bf{Col}}\,B\)related to Nul \({B^T}\)? See section 6.1)

In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{\bf{4}}\\{ - {\bf{2}}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{ - {\bf{2}}}\\{\bf{6}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{{\bf{17}}}\\{\bf{1}}\\{\bf{5}}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free