Repeat Exercise 21 for \({{\bf{f}}_0}\left( {\frac{3}{4}} \right)\), \({{\bf{f}}_1}\left( {\frac{3}{4}} \right)\), and \({\bf{g}}\left( {\frac{3}{4}} \right)\).

Short Answer

Expert verified

The diagram is shown below:

Step by step solution

01

Describe the given information

It is given that \({{\rm{p}}_0},{\rm{ }}{{\rm{p}}_1},{\rm{ }}{{\rm{p}}_2} \in {\mathbb{R}^n}\). Also,\({{\rm{f}}_0}\left( t \right) = \left( {1 - t} \right){{\rm{p}}_0} + t{{\rm{p}}_1}\), \({{\rm{f}}_1}\left( t \right) = \left( {1 - t} \right){{\rm{p}}_1} + t{{\rm{p}}_2}\)and \({\rm{g}}\left( t \right) = \left( {1 - t} \right){{\rm{f}}_0}\left( t \right) + t{{\rm{f}}_1}\left( t \right)\).The graph of\({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\),\({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\) and\({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\) is to be drawn.

02

Step 2:Find the values of \({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\),\({{\rm{f}}_1}\left( {\frac{3}{4}} \right)\) and\({\rm{g}}\left( {\frac{3}{4}} \right)\)

The values of \({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\),\({{\rm{f}}_1}\left( {\frac{3}{4}} \right)\) and\({\rm{g}}\left( {\frac{3}{4}} \right)\)are calculated as:

\(\begin{aligned}{}{{\rm{f}}_0}\left( {\frac{3}{4}} \right) &= \left( {1 - \frac{3}{4}} \right){{\rm{p}}_0} + \frac{3}{4}{{\rm{p}}_1}\\ &= \frac{1}{4}{{\rm{p}}_0} + \frac{3}{4}{{\rm{p}}_1}\\\frac{1}{4}\left( {{{\rm{p}}_0} + 3{{\rm{p}}_1}} \right)\end{aligned}\)

It shows that\({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\)is\(\frac{1}{4}\)of the distance of the line\({{\rm{p}}_0}{\rm{, }}{{\rm{p}}_1}\)from the point\({{\rm{p}}_0}\), and\(\frac{3}{4}\)of the distance of the line\({{\rm{p}}_0}{\rm{, }}{{\rm{p}}_1}\)from the point\({{\rm{p}}_1}\).

\(\begin{aligned}{}{{\rm{f}}_1}\left( {\frac{3}{4}} \right) &= \left( {1 - \frac{3}{4}} \right){{\rm{p}}_1} + \frac{3}{4}{{\rm{p}}_2}\\ &= \frac{1}{4}{{\rm{p}}_1} + \frac{3}{4}{{\rm{p}}_2}\\\frac{1}{4}\left( {{{\rm{p}}_1} + 3{{\rm{p}}_2}} \right)\end{aligned}\)

It shows that \({{\rm{f}}_1}\left( {\frac{3}{4}} \right)\)is\(\frac{1}{4}\)of the distance of the line\({{\rm{p}}_0}{\rm{ }}{{\rm{p}}_1}\)from the point\({{\rm{p}}_0}\), and\(\frac{3}{4}\)of the distance of the line\({{\rm{p}}_0}{\rm{ }}{{\rm{p}}_1}\)from the point\({{\rm{p}}_1}\).

\(\begin{aligned}{}{\rm{g}}\left( {\frac{3}{4}} \right) &= \left( {1 - \frac{3}{4}} \right){{\rm{f}}_0}\left( {\frac{3}{4}} \right) + \frac{1}{2}{{\rm{f}}_1}\left( {\frac{3}{4}} \right)\\ &= \frac{1}{4}{{\rm{f}}_0}\left( {\frac{3}{4}} \right) + \frac{3}{4}{{\rm{f}}_1}\left( {\frac{3}{4}} \right)\\ &= \frac{1}{4}\left( {{{\rm{f}}_0}\left( {\frac{3}{4}} \right) + 3{{\rm{f}}_1}\left( {\frac{3}{4}} \right)} \right)\end{aligned}\)

It shows that \({\rm{g}}\left( {\frac{3}{4}} \right)\)is\(\frac{1}{4}\)of the distance of the line\({{\rm{f}}_0}\left( {\frac{3}{4}} \right){{\rm{f}}_1}\left( {\frac{3}{4}} \right)\)from the point\({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\), and\(\frac{3}{4}\)of the distance of the line\({{\rm{p}}_0}{\rm{ }}{{\rm{p}}_1}\)from the point\({{\rm{f}}_1}\left( {\frac{3}{4}} \right)\).

03

Step 3:Draw the diagram

Draw lines joining points\({{\rm{p}}_0}{\rm{, }}{{\rm{p}}_1}\), and points\({{\rm{p}}_1}{\rm{, }}{{\rm{p}}_2}\),such that\({{\rm{f}}_0}\left( {\frac{3}{4}} \right)\),\({{\rm{f}}_1}\left( {\frac{3}{4}} \right)\)is one fourth from front end and three fourth from rear end.

Afterwards, the\({\rm{g}}\left( {\frac{3}{4}} \right)\)is at its one fourth from front end and three fourth from rear end of the line joining\({{\rm{f}}_0}\left( {\frac{1}{2}} \right)\),\({{\rm{f}}_1}\left( {\frac{1}{2}} \right)\).

The diagram is shown below:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let A be the \({\bf{1}} \times {\bf{4}}\) matrix \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{3}}}&{\bf{4}}&{ - {\bf{2}}}\end{array}} \right)\) and let \(b = {\bf{5}}\). Let \(H = \left\{ {{\bf{x}}\,\,{\rm{in}}\,{\mathbb{R}^{\bf{4}}}:A{\bf{x}} = {\bf{b}}} \right\}\).

Questions: Let \({F_{\bf{1}}}\) and \({F_{\bf{2}}}\) be 4-dimensional flats in \({\mathbb{R}^{\bf{6}}}\), and suppose that \({F_{\bf{1}}} \cap {F_{\bf{2}}} \ne \phi \). What are the possible dimension of \({F_{\bf{1}}} \cap {F_{\bf{2}}}\)?

In Exercises 21–24, a, b, and c are non-collinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \) and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

22. Let p be a point on the line through a and b. Show that\(det\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{p}} }\end{array}} \right] = 0\).

Question: 27. Give an example of a closed subset\(S\)of\({\mathbb{R}^{\bf{2}}}\)such that\({\rm{conv}}\,S\)is not closed.

A quartic Bézier curve is determined by five control points,

\({{\bf{p}}_{\bf{o}}}{\bf{,}}\,{\rm{ }}{{\bf{p}}_{\bf{1}}}\,{\bf{,}}{\rm{ }}{{\bf{p}}_{\bf{2}}}\,{\bf{,}}{\rm{ }}{{\bf{p}}_{\bf{3}}}\)and \({{\bf{p}}_4}\):

\({\bf{x}}\left( t \right) = {\left( {1 - t} \right)^4}{{\bf{p}}_0} + 4t{\left( {1 - t} \right)^3}{{\bf{p}}_1} + 6{t^2}{\left( {1 - t} \right)^2}{{\bf{p}}_2} + 4{t^3}\left( {1 - t} \right){{\bf{p}}_3} + {t^4}{{\bf{p}}_4}\)for \(0 \le t \le 1\)

Construct the quartic basis matrix \({M_B}\) for \({\bf{x}}\left( t \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free