Given control points \({{\rm{p}}_{\rm{o}}}\) , \({{\rm{p}}_{\rm{1}}}\) , \({{\rm{p}}_{\rm{2}}}\) and \({{\rm{p}}_{\rm{3}}}\) in \({\mathbb{R}^n}\) , let \({g_1}\left( t \right)\)for \(0 \le t \le 1\) be the quadratic Bézier curve from Exercise 23 determined by \({{\rm{p}}_{\rm{o}}}\) , \({{\rm{p}}_{\rm{1}}}\) , and \({{\rm{p}}_{\rm{2}}}\), and let \({g_2}\left( t \right)\)be defined similarly for \({{\rm{p}}_{\rm{1}}}\) , \({{\rm{p}}_{\rm{2}}}\) and \({{\rm{p}}_{\rm{3}}}\). For \(0 \le t \le 1\), define \(h\left( t \right) = \left( {1 - t} \right){g_1}\left( t \right) + t{g_2}\left( t \right)\). Show that the graph of \(h\left( t \right)\)lies in the convex hull of the four control points. This curve is called a cubic Bézier curve, and its definition here is one step in an algorithm for constructing Bézier curves (discussed later in Section 8.6). A Bézier curve of degree \(k\) is determined by \(k + 1\) control points, and its graph lies in the convex hull of these control points.

Short Answer

Expert verified

\({\bf{h}}\left( t \right) = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\bf{p}}_{\bf{o}}} + \left( {3t - 6{t^2} + 3{t^3}} \right){{\bf{p}}_{\bf{1}}} + \left( {3{t^2} - 3{t^3}} \right){{\bf{p}}_{\bf{2}}} + {t^3}{{\bf{p}}_{\bf{3}}}\)

It is shown that \({\bf{h}}\left( t \right)\)is the convex combination of \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}\,{{\bf{p}}_{\bf{1}}}{\bf{,}}\,{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\).

Step by step solution

01

Use the definition of affine hull

Assume that \({{\bf{p}}_{\bf{o}}}{\bf{,}}\,{{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}} \in {{\bf{g}}_{\bf{o}}}\left( t \right)\) and \({{\bf{p}}_{\bf{1}}}{\bf{,}}\,{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}} \in {{\bf{g}}_{\bf{1}}}\left( t \right)\).

The affine hull of distinct points \({v_1}\) and \({v_2}\) is \(y = \left( {1 - t} \right){v_1} + t{v_2}\).

Similarly, the affine hull of \({{\bf{g}}_{\bf{o}}}\left( t \right)\)and \({{\bf{g}}_{\bf{1}}}\left( t \right)\)is \({\bf{h}}\left( t \right) = \left( {1 - t} \right){{\bf{g}}_{\bf{o}}}\left( t \right) + t{{\bf{g}}_{\bf{1}}}\left( t \right)\).

02

 Apply the affine hull for \({g_o}\left( t \right)\), and\({g_1}\left( t \right)\)

\(\begin{aligned}{}{\bf{h}}\left( t \right) = \left( {1 - t} \right)\left( {{{\left( {1 - t} \right)}^2}{{\bf{p}}_{\bf{o}}} + 2t\left( {1 - t} \right){p_1} + {t^2}{p_2}} \right) + t\left( {{{\left( {1 - t} \right)}^2}{{\bf{p}}_{\bf{1}}} + 2t\left( {1 - t} \right){{\bf{p}}_{\bf{2}}} + {t^2}{{\bf{p}}_{\bf{3}}}} \right)\\ = {\left( {1 - t} \right)^3}{{\bf{p}}_{\bf{o}}} + 2t\left( {1 - 2t + {t^2}} \right){{\bf{p}}_{\bf{1}}} + \left( {{t^2} - {t^3}} \right){{\bf{p}}_{\bf{2}}} + t\left( {1 - 2t + {t^2}} \right){{\bf{p}}_{\bf{1}}} + 2{t^2}\left( {1 - t} \right){{\bf{p}}_{\bf{2}}} + {t^3}{{\bf{p}}_{\bf{3}}}\\ = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\bf{p}}_{\bf{o}}} + \left( {2t - 4{t^2} + 2{t^3}} \right){{\bf{p}}_{\bf{1}}} + \left( {{t^2} - {t^3}} \right){{\bf{p}}_{\bf{2}}} + \left( {t - 2{t^2} + {t^3}} \right){{\bf{p}}_{\bf{1}}}\\ + \left( {2{t^2} - 2{t^3}} \right){{\bf{p}}_{\bf{2}}} + {t^3}{{\bf{p}}_{\bf{3}}}\\ = \left( {1 - 3t + 3{t^2} - {t^3}} \right){{\bf{p}}_{\bf{o}}} + \left( {3t - 6{t^2} + 3{t^3}} \right){{\bf{p}}_{\bf{1}}} + \left( {3{t^2} - 3{t^3}} \right){p_2} + {t^3}{{\bf{p}}_{\bf{3}}}\end{aligned}\)

03

Use the concept that weights in linear combination sum to 1

A point \(y\) in\({\mathbb{R}^n}\) is an affine combination of \({v_1},.......,{v_p}\)in \({\mathbb{R}^n}\), if \(\overline y = {c_1}{\overline v _1} + ...... + {c_p}{\overline v _p}\) such that \({c_1} + ...... + {c_p} = 1\).

So, the sum of the weight of \(h\left( t \right)\) should be 1; that is, \(\left( {1 - 3t + 3{t^2} - {t^3}} \right) + \left( {3t - 6{t^2} + 3{t^3}} \right) + \left( {3{t^2} - 3{t^3}} \right) + {t^3} = 1\).

04

Find the range of weight when \(0 \le t \le 1\).

The weight sum is \(\left( {1 - 3t + 3{t^2} - {t^3}} \right) + \left( {3t - 6{t^2} + 3{t^3}} \right) + \left( {3{t^2} - 3{t^3}} \right) + {t^3} = 1\). This sum also varies between 0 and 1 if \(0 \le t \le 1\).

This implies, it is convex combination of \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}\,{{\bf{p}}_{\bf{1}}}{\bf{,}}\,{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 21–24, a, b, and c are non-collinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \) and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

22. Let p be a point on the line through a and b. Show that\(det\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{p}} }\end{array}} \right] = 0\).

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

10.a. If \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely dependent set in \({\mathbb{R}^n}\), then the set \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) of homogeneous forms may be linearly independent.

b. If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) and \({{\mathop{\rm v}\nolimits} _4}\) are in \({\mathbb{R}^3}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}} \right\}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}\) is affinely independent.

c. Given \(S = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}} \right\}\) in \({\mathbb{R}^n}\), each \({\bf{p}}\) in\({\mathop{\rm aff}\nolimits} S\) has a unique representation as an affine combination of \({{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}\).

d. When color information is specified at each vertex \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) of a triangle in \({\mathbb{R}^3}\), then the color may be interpolated at a point p in \({\mathop{\rm aff}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}\) using the barycentric coordinates of p.

e. If T is a triangle in \({\mathbb{R}^2}\) and if a point p is on edge of the triangle, then the barycentric coordinates of p (for this triangle) are not all positive.


Prove Theorem 6 for an affinely independent set\(S = \left\{ {{v_1},...,{v_k}} \right\}\)in\({\mathbb{R}^{\bf{n}}}\). [Hint:One method is to mimic the proof of Theorem 7 in Section 4.4.]

Question: 2. Let Lbe the line in \({\mathbb{R}^{\bf{2}}}\) through the points \(\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{4}}\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{ - {\bf{1}}}\end{array}} \right)\). Find a linear functional f and a real number d such that \(L = \left( {f:d} \right)\).

In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{aligned}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{aligned}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each of the given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{8}}\\{\bf{4}}\end{aligned}} \right)\)

b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{6}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right)\)

c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{ - {\bf{1}}}\\{ - {\bf{5}}}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free