Chapter 8: Q27E (page 437)
Question: 27. Give an example of a closed subset\(S\)of\({\mathbb{R}^{\bf{2}}}\)such that\({\rm{conv}}\,S\)is not closed.
Short Answer
The set is \(S = \left\{ {\left( {x,y} \right):{x^2}{y^2} = 1,\,\,y > 0} \right\}\).
Chapter 8: Q27E (page 437)
Question: 27. Give an example of a closed subset\(S\)of\({\mathbb{R}^{\bf{2}}}\)such that\({\rm{conv}}\,S\)is not closed.
The set is \(S = \left\{ {\left( {x,y} \right):{x^2}{y^2} = 1,\,\,y > 0} \right\}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.
3.\(\left( {\begin{aligned}{{}}1\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 2}\\{ - 4}\\8\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\{ - 1}\\{11}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{15}\\{ - 9}\end{aligned}} \right)\)
Repeat Exercise 25 with\({v_1} = \left[ {\begin{array}{*{20}{c}}1\\{\bf{2}}\\{ - {\bf{4}}}\end{array}} \right]\),\({v_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{8}}\\{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right]\), \({v_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{3}}\\{{\bf{10}}}\\{ - {\bf{2}}}\end{array}} \right]\), \({\bf{a}} = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{0}}\\{\bf{8}}\end{array}} \right]\), and \({\bf{b}} = \left[ {\begin{array}{*{20}{c}}{.{\bf{9}}}\\{{\bf{2}}.{\bf{0}}}\\{ - {\bf{3}}.{\bf{7}}}\end{array}} \right]\).
Use partitioned matrix multiplication to compute the following matrix product, which appears in the alternative formula (5) for a Bezier curve.
\(\left( {\begin{aligned}{{}}1&0&0&0\\{ - 3}&3&0&0\\3&{ - 6}&3&0\\{ - 1}&3&{ - 3}&1\end{aligned}} \right)\left( {\begin{aligned}{{}}{{{\mathop{\rm p}\nolimits} _0}}\\{{{\mathop{\rm p}\nolimits} _1}}\\{{{\mathop{\rm p}\nolimits} _2}}\\{{{\mathop{\rm p}\nolimits} _3}}\end{aligned}} \right)\)
Questions: Let \({F_{\bf{1}}}\) and \({F_{\bf{2}}}\) be 4-dimensional flats in \({\mathbb{R}^{\bf{6}}}\), and suppose that \({F_{\bf{1}}} \cap {F_{\bf{2}}} \ne \phi \). What are the possible dimension of \({F_{\bf{1}}} \cap {F_{\bf{2}}}\)?
Let \({\bf{x}}\left( t \right)\) be a cubic Bézier curve determined by points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\), \({{\bf{p}}_2}\), and \({{\bf{p}}_3}\).
a. Compute the tangent vector \({\bf{x}}'\left( t \right)\). Determine how \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points, and give geometric descriptions of the directions of these tangent vectors. Is it possible to have \({\bf{x}}'\left( 1 \right) = 0\)?
b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_1}\) as the origin of the coordinate system.]
What do you think about this solution?
We value your feedback to improve our textbook solutions.