Chapter 8: Q29E (page 437)
Question: 29. Prove that the open ball \(B\left( {{\rm{p}},\delta } \right) = \left\{ {{\rm{x:}}\left\| {{\rm{x - p}}} \right\| < \delta } \right\}\)is a convex set. (Hint: Use the Triangle Inequality).
Short Answer
It is shown that the open ball\(B\left( {{\rm{p}},\delta } \right) = \left\{ {{\rm{x}}:\left\| {{\rm{x}} - {\rm{p}}} \right\| < \delta } \right\}\)is a convex set.