Question 2: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}0\\{ - 1}\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\1\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right)\) in \({\mathbb{R}^{\bf{2}}}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 2{x_1} + {x_2}\)

Short Answer

Expert verified
  1. On the set conv\(\left\{ {{{\bf{p}}_2},{{\bf{p}}_3}} \right\}\) is the point in \(S\) at \(m = 3\).
  2. On the set \({\rm{conv}}\left\{ {{{\bf{p}}_1},{{\bf{p}}_2}} \right\}\) is the point in \(S\) at \(m = 1\).
  3. \({{\mathop{\rm p}\nolimits} _3}\) is the point in \(S\) at \(m = 0\).

Step by step solution

01

The maximum and minimum is attained at an extreme point

Theorem 16states that consider f as a linear functional defined on a nonempty compact convex set \(S\).

Then, there are extreme points \(\widehat {\mathop{\rm v}\nolimits} \) and \(\widehat {\mathop{\rm w}\nolimits} \) of \(S\) such that \(f\left( {\widehat {\mathop{\rm v}\nolimits} } \right) = \mathop {\max }\limits_{{\mathop{\rm v}\nolimits} \in S} f\left( {\mathop{\rm v}\nolimits} \right)\) and \(f\left( {\widehat {\mathop{\rm w}\nolimits} } \right) = \mathop {\min }\limits_{{\mathop{\rm v}\nolimits} \in S} f\left( {\mathop{\rm v}\nolimits} \right)\).

02

Determine the maximum value \(m\) of \(f\)

According to theorem 16, the maximum value is attained at one of the extreme points of \(S\).

Evaluate \(f\) at the extreme point and select the largest value to find \(m\) as shown below:

  1. \({f_1}\left( {{{\mathop{\rm p}\nolimits} _1}} \right) = - 1\), \({f_1}\left( {{{\mathop{\rm p}\nolimits} _2}} \right) = 3\), \({f_1}\left( {{{\mathop{\rm p}\nolimits} _3}} \right) = 3\), therefore, \({m_1} = 3\). Graph the line \({f_1}\left( {{x_1},{x_2}} \right) = {m_1}\) which means that \({x_1} + {x_2} = 3\), and \({\mathop{\rm x}\nolimits} = {{\mathop{\rm p}\nolimits} _2}\) is the only point in \(S\) at which \({f_1}\left( {\mathop{\rm x}\nolimits} \right) = 3\).


b. \({f_2}\left( {{{\mathop{\rm p}\nolimits} _1}} \right) = 1\), \({f_2}\left( {{{\mathop{\rm p}\nolimits} _2}} \right) = 1\), \({f_2}\left( {{{\mathop{\rm p}\nolimits} _3}} \right) = - 1\), therefore, \({m_2} = 1\). Graph the line \({f_2}\left( {{x_1},{x_2}} \right) = {m_2}\) which means that \({x_1} - {x_2} = 1\), and \({\mathop{\rm x}\nolimits} = {{\mathop{\rm p}\nolimits} _1}\) is the only point in \(S\) at which \({f_2}\left( {\mathop{\rm x}\nolimits} \right) = 1\).


c. \({f_3}\left( {{{\mathop{\rm p}\nolimits} _1}} \right) = - 1\), \({f_3}\left( {{{\mathop{\rm p}\nolimits} _2}} \right) = - 3\), \({f_3}\left( {{{\mathop{\rm p}\nolimits} _3}} \right) = 0\), therefore, \({m_3} = 0\). Graph the line \({f_3}\left( {{x_1},{x_2}} \right) = {m_3}\) which means that \( - 2{x_1} + {x_2} = 0\), and \({\mathop{\rm x}\nolimits} = {{\mathop{\rm p}\nolimits} _3}\) is the only point in \(S\) at which \({f_3}\left( {\mathop{\rm x}\nolimits} \right) = 0\).


Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question 1: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}1\\0\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\3\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right)\) in \({\mathbb{R}^2}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a.\(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 3{x_1} + {x_2}\)

Question: In Exercise 9, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

9. \(\left( {\begin{array}{*{20}{c}}1\\0\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\3\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\2\\2\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\1\\1\\1\end{array}} \right)\)

Let \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) be cubic Bézier curves with control points \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}{{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\)and \(\left\{ {{{\bf{p}}_{\bf{3}}}{\bf{,}}{{\bf{p}}_{\bf{4}}}{\bf{,}}{{\bf{p}}_{\bf{5}}}{\bf{,}}{{\bf{p}}_{\bf{6}}}} \right\}\) respectively, so that \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) are joined at \({{\bf{p}}_3}\) . The following questions refer to the curve consisting of \({\bf{x}}\left( t \right)\) followed by \(y\left( t \right)\). For simplicity, assume that the curve is in \({\mathbb{R}^2}\).

a. What condition on the control points will guarantee that the curve has \({C^1}\) continuity at \({{\bf{p}}_3}\) ? Justify your answer.

b. What happens when \({\bf{x'}}\left( 1 \right)\) and \({\bf{y'}}\left( 1 \right)\) are both the zero vector?

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the plane in \({\mathbb{R}^{\bf{3}}}\) spanned by the rows of \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{3}}&{\bf{5}}\\{\bf{0}}&{\bf{2}}&{\bf{4}}\end{array}} \right)\). That is, \(H = {\bf{Row}}\,B\). (Hint: How is H is related to Nul B?see section 6.1.)

Question: 19. Let \(S\) be an affine subset of \({\mathbb{R}^n}\) , suppose \(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\)is a linear transformation, and let \(f\left( S \right)\) denote the set of images \(\left\{ {f\left( {\rm{x}} \right):{\rm{x}} \in S} \right\}\). Prove that \(f\left( S \right)\)is an affine subset of \({\mathbb{R}^m}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free