In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{\bf{4}}\\{ - {\bf{2}}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{ - {\bf{2}}}\\{\bf{6}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{{\bf{17}}}\\{\bf{1}}\\{\bf{5}}\end{aligned}} \right)\)

Short Answer

Expert verified

The affine combination is \({\bf{y}} = - 3{{\bf{v}}_1} + 2{{\bf{v}}_2} + 2{{\bf{v}}_3}\).

Step by step solution

01

Find the translated point

Write the translated points as shown below:

\({{\bf{v}}_2} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}3\\3\\{ - 3}\end{aligned}} \right)\)

\({{\bf{v}}_3} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}7\\{ - 3}\\5\end{aligned}} \right)\)

\({\bf{y}} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}{20}\\0\\4\end{aligned}} \right)\)

Write the equation by using the translated matrix as shown below:

\(\begin{aligned}{c}{\bf{y}} - {{\bf{v}}_1} = {c_2}\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + {c_3}\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right)\\\left( {\begin{aligned}{*{20}{c}}{20}\\0\\4\end{aligned}} \right) = {c_2}\left( {\begin{aligned}{*{20}{c}}3\\3\\{ - 3}\end{aligned}} \right) + {c_3}\left( {\begin{aligned}{*{20}{c}}7\\{ - 3}\\5\end{aligned}} \right)\end{aligned}\)

02

Write the augmented matrix

The augmented matrix can be written as shown below:

\(M = \left( {\begin{aligned}{*{20}{c}}3&7&{20}\\3&{ - 3}&0\\{ - 3}&5&4\end{aligned}} \right)\)

Row reduce the augmented matrix as shown below:

\(\begin{aligned}{c}M = \left( {\begin{aligned}{*{20}{c}}3&7&{20}\\3&{ - 3}&0\\{ - 3}&5&4\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}3&7&{20}\\0&{ - 10}&{ - 20}\\0&{12}&{24}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \begin{aligned}{l}{R_2} \to {R_2} - {R_1}\\{R_3} \to {R_3} + {R_1}\end{aligned} \right)\\ = \left( {\begin{aligned}{*{20}{c}}3&7&{20}\\0&1&2\\0&1&2\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \begin{aligned}{l}{R_2} \to - \frac{1}{{10}}{R_2}\\{R_3} \to \frac{1}{{12}}{R_3}\end{aligned} \right)\\ = \left( {\begin{aligned}{*{20}{c}}3&0&6\\0&1&2\\0&0&0\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \begin{aligned}{l}{R_3} \to {R_3} - {R_2}\\{R_1} \to {R_1} - 7{R_2}\end{aligned} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&0&2\\0&1&2\\0&0&0\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to \frac{1}{3}{R_1}} \right)\end{aligned}\)

03

Write the system of equations

From the augmented matrix, the system of equation is shown below:

\({c_2} = 2\)

And,

\({c_3} = 2\)

Substitute the value in the equation of translated points as shown below:

\(\begin{aligned}{c}{\bf{y}} - {{\bf{v}}_1} = 2\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + 2\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right)\\{\bf{y}} = {{\bf{v}}_1} + 2{{\bf{v}}_2} - 2{{\bf{v}}_1} + 2{{\bf{v}}_3} - 2{{\bf{v}}_1}\\{\bf{y}} = - 3{{\bf{v}}_1} + 2{{\bf{v}}_2} + 2{{\bf{v}}_3}\end{aligned}\)

So, the vector \({\bf{y}}\) is \( - 3{{\bf{v}}_1} + 2{{\bf{v}}_2} + 2{{\bf{v}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the column space of the matrix \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{5}}&{\bf{2}}\\{ - {\bf{4}}}&{ - {\bf{4}}}\end{array}} \right)\). That is, \(H = {\bf{Col}}\,B\).(Hint: How is \({\bf{Col}}\,B\)related to Nul \({B^T}\)? See section 6.1)

Let\(T\)be a tetrahedron in “standard” position, with three edges along the three positive coordinate axes in\({\mathbb{R}^3}\), and suppose the vertices are\(a{{\bf{e}}_1}\),\(b{{\bf{e}}_2}\),\(c{{\bf{e}}_{\bf{3}}}\), and 0, where\(\left[ {\begin{array}{*{20}{c}}{{{\bf{e}}_1}}&{{{\bf{e}}_2}}&{{{\bf{e}}_3}}\end{array}} \right] = {I_3}\). Find formulas for the barycentric coordinates of an arbitrary point\({\bf{p}}\)in\({\mathbb{R}^3}\).

In Exercises 7 and 8, find the barycentric coordinates of p with respect to the affinely independent set of points that precedes it.

8. \(\left( {\begin{array}{{}}0\\1\\{ - 2}\\1\end{array}} \right),\left( {\begin{array}{{}}1\\1\\0\\2\end{array}} \right),\left( {\begin{array}{{}}1\\4\\{ - 6}\\5\end{array}} \right)\), \({\mathop{\rm p}\nolimits} = \left( {\begin{array}{{}}{ - 1}\\1\\{ - 4}\\0\end{array}} \right)\)

In Exercises 7 and 8, find the barycentric coordinates of p with respect to the affinely independent set of points that precedes it.

7. \(\left( {\begin{array}{{}}1\\{ - 1}\\2\\1\end{array}} \right),\left( {\begin{array}{{}}2\\1\\0\\1\end{array}} \right),\left( {\begin{array}{{}}1\\2\\{ - 2}\\0\end{array}} \right)\), \({\mathop{\rm p}\nolimits} = \left( {\begin{array}{{}}5\\4\\{ - 2}\\2\end{array}} \right)\)

In Exercises 13-15 concern the subdivision of a Bezier curve shown in Figure 7. Let \({\mathop{\rm x}\nolimits} \left( t \right)\) be the Bezier curve, with control points \({{\mathop{\rm p}\nolimits} _0},...,{{\mathop{\rm p}\nolimits} _3}\), and let \({\mathop{\rm y}\nolimits} \left( t \right)\) and \({\mathop{\rm z}\nolimits} \left( t \right)\) be the subdividing Bezier curves as in the text, with control points \({{\mathop{\rm q}\nolimits} _0},...,{{\mathop{\rm q}\nolimits} _3}\) and \({{\mathop{\rm r}\nolimits} _0},...,{{\mathop{\rm r}\nolimits} _3}\), respectively.

14.a. Justify each equal sign:

\(3\left( {{{\mathop{\rm r}\nolimits} _3} - {{\mathop{\rm r}\nolimits} _2}} \right) = z'\left( 1 \right) = .5x'\left( 1 \right) = \frac{3}{2}\left( {{{\mathop{\rm p}\nolimits} _3} - {{\mathop{\rm p}\nolimits} _2}} \right)\)

b. Show that \({{\mathop{\rm r}\nolimits} _2}\) is the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _2}\) to \({{\mathop{\rm p}\nolimits} _3}\).

c. Justify each equal sign: \(3\left( {{{\mathop{\rm r}\nolimits} _1} - {{\mathop{\rm r}\nolimits} _0}} \right) = z'\left( 0 \right) = .5x'\left( {.5} \right)\).

d. Use part (c) to show that \(8{{\mathop{\rm r}\nolimits} _1} = - {{\mathop{\rm p}\nolimits} _0} - {{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2} + {{\mathop{\rm p}\nolimits} _3} + 8{{\mathop{\rm r}\nolimits} _0}\).

e. Use part (d) equation (8), and part (a) to show that \({{\mathop{\rm r}\nolimits} _1}\) is the midpoint of the segment from \({{\mathop{\rm r}\nolimits} _2}\) to the midpoint of the segment from \({{\mathop{\rm p}\nolimits} _1}\) to \({{\mathop{\rm p}\nolimits} _2}\). That is, \({{\mathop{\rm r}\nolimits} _1} = \frac{1}{2}\left( {{{\mathop{\rm r}\nolimits} _2} + \frac{1}{2}\left( {{{\mathop{\rm p}\nolimits} _1} + {{\mathop{\rm p}\nolimits} _2}} \right)} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free