In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

3.\(\left( {\begin{aligned}{{}}1\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 2}\\{ - 4}\\8\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\{ - 1}\\{11}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{15}\\{ - 9}\end{aligned}} \right)\)

Short Answer

Expert verified

The set of points are affinely independent.

Step by step solution

01

Condition for affinely dependent

The set is said to be affinely dependent, if the set \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},...,{{\bf{v}}_p}} \right\}\) in the dimension\({\mathbb{R}^n}\) exists such that \({c_1},{c_2},...,{c_p}\) not all zero, and the sum must be zero \({c_1} + {c_2} + ... + {c_p} = 0\), and \({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + ... + {c_p}{{\bf{v}}_p} = 0\).

02

Compute \({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}\), \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}\)

Let \({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}1\\2\\{ - 1}\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{aligned}{{}}{ - 2}\\{ - 4}\\8\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{aligned}{{}}2\\{ - 1}\\{11}\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _4} = \left( {\begin{aligned}{{}}0\\{15}\\9\end{aligned}} \right)\).

Compute \({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}\), \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}\), and \({{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}\) as shown below

\({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}{ - 3}\\{ - 6}\\9\end{aligned}} \right)\), \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}1\\{ - 3}\\{12}\end{aligned}} \right)\), \({{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}{ - 1}\\{13}\\{ - 8}\end{aligned}} \right)\)

Write the augmented matrix as shown below:

\(\left( {\begin{aligned}{{}}{{{\bf{v}}_1}}&{{{\bf{v}}_2}}&{{{\bf{v}}_3}}&{{{\bf{v}}_4}}\end{aligned}} \right) \sim \left( {\begin{aligned}{{}}1&{ - 2}&2&0\\2&{ - 4}&{ - 1}&{15}\\{ - 1}&8&{11}&9\end{aligned}} \right)\)

03

Apply row operation

At row 2, multiply row 1 by 2 and subtract it from row 2.

\( \sim \left( {\begin{aligned}{{}}1&{ - 2}&2&0\\0&0&{ - 5}&{15}\\{ - 1}&8&{11}&{ - 9}\end{aligned}} \right)\)

At row 3, add row 1 and row 3

\( \sim \left( {\begin{aligned}{{}}1&{ - 2}&2&0\\0&0&{ - 5}&{15}\\0&6&{13}&{ - 9}\end{aligned}} \right)\)

Interchange row 2 and row 3

\( \sim \left( {\begin{aligned}{{}}1&{ - 2}&2&0\\0&6&{13}&{ - 9}\\0&0&{ - 5}&{15}\end{aligned}} \right)\)

At row 2, multiply row 2 by \(\frac{1}{6}\)

\( \sim \left( {\begin{aligned}{{}}1&{ - 2}&2&0\\0&6&{\frac{{13}}{6}}&{ - \frac{3}{2}}\\0&0&{ - 5}&{15}\end{aligned}} \right)\)

At row 1, multiply row 2 by 2 and add it to row 1

\( \sim \left( {\begin{aligned}{{}}1&0&{\frac{{19}}{3}}&{ - 3}\\0&6&{\frac{{13}}{6}}&{ - \frac{3}{2}}\\0&0&{ - 5}&{15}\end{aligned}} \right)\)

At row 3, multiply row 3 by \(\frac{1}{{ - 5}}\)

\( \sim \left( {\begin{aligned}{{}}1&0&{\frac{{19}}{3}}&{ - 3}\\0&6&{\frac{{13}}{6}}&{ - \frac{3}{2}}\\0&0&1&{ - 3}\end{aligned}} \right)\)

At row 1, multiply row 3 by \(\frac{{19}}{3}\) and subtract it from row 1. At row 2, multiply row 3 by \(\frac{{13}}{6}\) and remove it from row 2

\( \sim \left( {\begin{aligned}{{}}1&0&0&{16}\\0&1&0&5\\0&0&1&{ - 3}\end{aligned}} \right)\)

The columns are linearly independent because every column is a pivot column.

The solution of the matrix is \({{\mathop{\rm x}\nolimits} _1} = 16,{{\mathop{\rm x}\nolimits} _2} = 5,{{\mathop{\rm x}\nolimits} _3} = - 3\).

04

Determine whether the set of points is affinely dependent

Theorem 5states that an indexed set \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) in \({\mathbb{R}^n}\), with \(p \ge 2\), the following statement is equivalent. This means that either all the statements are true or all the statements are false.

  1. The set \(S\) isaffinely dependent.
  2. Each of the points in \(S\)is an affine combination of the other points in \(S\).
  3. In \({\mathbb{R}^n}\), the set \(\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _1}} \right\}\)is linearly dependent.
  4. The set \(\left\{ {{{\bar v}_1},...,{{\bar v}_p}} \right\}\) of homogeneous forms in \({\mathbb{R}^{n + 1}}\) is linearly dependent.

If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) are points, then the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is a basis for \({\mathbb{R}^3}\), and\({{\mathop{\rm v}\nolimits} _4} = 16{{\mathop{\rm v}\nolimits} _1} + 5{{\mathop{\rm v}\nolimits} _2} - 3{{\mathop{\rm v}\nolimits} _3}\). However, the weights in the linear combination do not sum to 1. The set \(S\) is affinely independent.

Thus, the set of points are affinely independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) and \({\mathop{\rm x}\nolimits} \ge 0\).

6. \(A = \left( {\begin{array}{*{20}{c}}2&3\\4&1\end{array}} \right),{\rm{ }}{\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}{18}\\{16}\end{array}} \right)\)

Find an example in \({\mathbb{R}^2}\) to show that equality need not hold in the statement of Exercise 25.

Let\(T\)be a tetrahedron in “standard” position, with three edges along the three positive coordinate axes in\({\mathbb{R}^3}\), and suppose the vertices are\(a{{\bf{e}}_1}\),\(b{{\bf{e}}_2}\),\(c{{\bf{e}}_{\bf{3}}}\), and 0, where\(\left[ {\begin{array}{*{20}{c}}{{{\bf{e}}_1}}&{{{\bf{e}}_2}}&{{{\bf{e}}_3}}\end{array}} \right] = {I_3}\). Find formulas for the barycentric coordinates of an arbitrary point\({\bf{p}}\)in\({\mathbb{R}^3}\).

Question: 23. Let \({{\bf{v}}_1} = \left( \begin{array}{l}1\\1\end{array} \right)\), \({{\bf{v}}_2} = \left( \begin{array}{l}3\\0\end{array} \right)\), \({{\bf{v}}_3} = \left( \begin{array}{l}5\\3\end{array} \right)\) and \({\bf{p}} = \left( \begin{array}{l}4\\1\end{array} \right)\). Find a hyperplane \(f:d\) (in this case, a line) that strictly separates \({\bf{p}}\) from \({\rm{conv}}\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\).

Question: 16. Let \({\rm{v}} \in {\mathbb{R}^n}\)and let \(k \in \mathbb{R}\). Prove that \(S = \left\{ {{\rm{x}} \in {\mathbb{R}^n}:{\rm{x}} \cdot {\rm{v}} = k} \right\}\)is an affine subset of \({\mathbb{R}^n}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free