Question: In Exercise 3, determine whether each set is open or closed or neither open nor closed.

3. a. \(\left\{ {\left( {x,y} \right):y > {\bf{0}}} \right\}\)

b. \(\left\{ {\left( {x,y} \right):x = {\bf{2}}\,\,\,and\,\,{\bf{1}} \le y \le {\bf{3}}} \right\}\)

c. \(\left\{ {\left( {x,y} \right):x = {\bf{2}}\,\,\,and\,\,{\bf{1}} < y < {\bf{3}}} \right\}\)

d. \(\left\{ {\left( {x,y} \right):xy = {\bf{1}}\,\,\,and\,\,x > {\bf{0}}} \right\}\)

e. \(\left\{ {\left( {x,y} \right):xy \ge {\bf{1}}\,\,\,and\,\,x > {\bf{0}}} \right\}\)

Short Answer

Expert verified
  1. Open
  2. Closed
  3. Neither open nor closed
  4. Closed
  5. Closed

Step by step solution

01

To check every point is an interior point

(a)

Consider the set \(\left( {x,y} \right) \in \left\{ {\left( {x,y} \right):y > 0} \right\}\). Choose \(\delta = y\). To check that \(B\left( {\left( {x,y} \right),\delta } \right)\) is wholly contained in \(\left\{ {\left( {x,y} \right):y > 0} \right\}\) or not.

Let \((a,b) \in B\left( {\left( {x,y} \right),\delta } \right)\). Then

\(\begin{array}{l}\sqrt {{{\left( {a - x} \right)}^2} + {{\left( {b - y} \right)}^2}} < \delta \\\sqrt {{{\left( {a - x} \right)}^2} + {{\left( {b - y} \right)}^2}} < y\\\,\,\,\,{\left( {a - x} \right)^2} + {\left( {b - y} \right)^2} < {y^2}\\ \Rightarrow \,\,\,\,\,\,\,\,\,\,\,\,\,0 < {\left( {b - y} \right)^2} < {y^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 < b - y < y\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 < b < 2y\end{array}\)

This implies \(\left( {a,b} \right) \in \left\{ {\left( {x,y} \right):y > 0} \right\}\). Hence, \(B\left( {\left( {x,y} \right),\delta } \right)\) is wholly contained in \(\left\{ {\left( {x,y} \right):y > 0} \right\}\).

Thus \(\left\{ {\left( {x,y} \right):y > 0} \right\}\) is open.

02

To check every point is a boundary point

(b)

Consider \(\left( {2,3} \right) \in \left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 \le y \le 3} \right\}\). Choose \(\delta = \frac{1}{n}\), \(n \in \mathbb{N}\).

Let \((2 - \varepsilon ,3 - \varepsilon ) \notin \left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 \le y \le 3} \right\}\) where \(\varepsilon = \frac{1}{k}\) when \(k \to \infty \). Note that

\(\begin{array}{c}\sqrt {{{\left( {2 - \varepsilon - 2} \right)}^2} + {{\left( {3 - \varepsilon - 3} \right)}^2}} < \sqrt {{\varepsilon ^2} + {\varepsilon ^2}} \\ < \sqrt {2{\varepsilon ^2}} \\ < \sqrt 2 \varepsilon \\ < \delta \end{array}\)

This implies \((2 - \varepsilon ,3 - \varepsilon ) \in B\left( {\left( {2,3} \right),\delta } \right)\). Thus \(\left( {2,3} \right)\) is a boundary point of \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 \le y \le 3} \right\}\).

Hence \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 \le y \le 3} \right\}\) is closed.

03

Use the proper definition of open and closed

(c)

Consider \(\left( {2,1 + \varepsilon } \right) \in \left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\) where \(\varepsilon = \frac{1}{k}\) when \(k \to \infty \). Choose \(\delta = \frac{1}{n}\), \(n \in \mathbb{N}\). To check that \(B\left( {\left( {2,1 + \varepsilon } \right),\delta } \right)\) is completely contained in \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\) or not.

Let \(\left( {2 + \varepsilon ,1 + \varepsilon } \right) \in {\mathbb{R}^2}\). Then

\(\begin{array}{c}\left\| {\left( {2 + \varepsilon ,1 + \varepsilon } \right) - \left( {2,1 + \varepsilon } \right)} \right\| = \sqrt {{{\left( {2 + \varepsilon - 2} \right)}^2} + {{\left( {1 + \varepsilon - \left( {1 + \varepsilon } \right)} \right)}^2}} \\ < \sqrt {{\varepsilon ^2} + 0} \\ < \varepsilon \\ < \delta \end{array}\)

This implies \(\left( {2 + \varepsilon ,1 + \varepsilon } \right) \in B\left( {\left( {2,1 + \varepsilon } \right),\delta } \right)\). But \(\left( {2 + \varepsilon ,1 + \varepsilon } \right) \notin \left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\).

Thus \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\) is not open.

Consider \(\left( {2,1} \right) \notin \left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\). Choose \(\delta = \frac{1}{n}\), \(n \in \mathbb{N}\). To check that \(B\left( {\left( {2,1} \right),\delta } \right)\) contains a point of \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\) or not.

Let \(\left( {2,1 + \varepsilon } \right) \in {\mathbb{R}^2}\) where \(\varepsilon = \frac{1}{k}\) when \(k \to \infty \). Then

\(\begin{array}{c}\left\| {\left( {2,1 + \varepsilon } \right) - \left( {2,1} \right)} \right\| = \sqrt {{{\left( {2 - 2} \right)}^2} + {{\left( {1 + \varepsilon - 1} \right)}^2}} \\ < \sqrt {0 + {\varepsilon ^2}} \\ < \varepsilon \\ < \delta \end{array}\)

This implies \(\left( {2,1 + \varepsilon } \right) \in B\left( {\left( {2,1} \right),\delta } \right)\) and also in \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\).Hence \(\left( {2,1} \right)\) is a boundary point of \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\). But \(\left( {2,1} \right) \notin \left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\).

Thus \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\) is not closed.

Therefore \(\left\{ {\left( {x,y} \right):x = 2\,\,{\rm{and}}\,\,1 < y < 3} \right\}\) is neither open nor closed.

04

To check every point is a boundary point

(d)

The given set \(\left\{ {\left( {x,y} \right):xy = 1\,\,{\rm{and}}\,\,x > 0} \right\}\) can be written as \(\left\{ {\left( {x,y} \right):\,\,x > 0\,{\rm{and}}\,y > 0\,{\rm{such}}\,{\rm{that }}xy = 1} \right\} = \left\{ {\left( {\frac{p}{q},\frac{q}{p}} \right):\,\,p,q \in \mathbb{N}} \right\}\).

Let \(\left( {\frac{p}{q},\frac{q}{p}} \right) \in \left\{ {\left( {\frac{p}{q},\frac{q}{p}} \right):\,\,p,q \in \mathbb{N}} \right\}\). Choose \(\delta = \frac{1}{n}\), \(n \in \mathbb{N}\). We know that every\(B\left( {\left( {\frac{p}{q},\frac{q}{p}} \right),\delta } \right)\) contains at least an irrational point.

This implies every point in \(\left( {\frac{p}{q},\frac{q}{p}} \right) \in \left\{ {\left( {\frac{p}{q},\frac{q}{p}} \right):\,\,p,q \in \mathbb{N}} \right\}\) is the boundary point. Hence \(\left( {\frac{p}{q},\frac{q}{p}} \right) \in \left\{ {\left( {\frac{p}{q},\frac{q}{p}} \right):\,\,p,q \in \mathbb{N}} \right\}\) is closed.

That is \(\left\{ {\left( {x,y} \right):xy = 1\,\,{\rm{and}}\,\,x > 0} \right\}\) closed.

05

To check every point is a boundary point

(e)

Let \(\left( {x,\frac{1}{x}} \right) \in \left\{ {\left( {x,y} \right):xy \ge 1\,\,{\rm{and}}\,\,x > 0} \right\}\). Choose \(\delta = \frac{1}{n}\), \(n \in \mathbb{N}\).

Let \((x,\frac{1}{x} - \varepsilon ) \notin \left\{ {\left( {x,y} \right):xy \ge 1\,\,{\rm{and}}\,\,x > 0} \right\}\) where \(\varepsilon = \frac{1}{k}\) when \(k \to \infty \). Note that:

\(\begin{array}{c}\sqrt {{{\left( {x - x} \right)}^2} + {{\left( {\frac{1}{x} - \varepsilon - \frac{1}{x}} \right)}^2}} < \sqrt {{\varepsilon ^2}} \\ < \varepsilon \\ < \delta \end{array}\)

This implies \((x,\frac{1}{x} - \varepsilon ) \in B\left( {\left( {x,\frac{1}{x}} \right),\delta } \right)\). Thus \(\left( {x,\frac{1}{x}} \right)\) is a boundary point of\(\left\{ {\left( {x,y} \right):xy \ge 1\,\,{\rm{and}}\,\,x > 0} \right\}\).

Hence, \(\left\{ {\left( {x,y} \right):xy \ge 1\,\,{\rm{and}}\,\,x > 0} \right\}\) is closed.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that a set\(\left\{ {{{\bf{v}}_{\bf{1}}},...,{{\bf{v}}_p}} \right\}\)in\({\mathbb{R}^{\bf{n}}}\)is affinely dependent when \(p \ge n + 2\).

Use only the definition of affine dependence to show that anindexed set \(\left\{ {{v_1},{v_2}} \right\}\) in \({\mathbb{R}^{\bf{n}}}\) is affinely dependent if and only if \({v_1} = {v_2}\).

TrueType fonts, created by Apple Computer and Adobe Systems, use quadratic Bezier curves, while PostScript fonts, created by Microsoft, use cubic Bezier curves. The cubic curves provide more flexibility for typeface design, but it is important to Microsoft that every typeface using quadratic curves can be transformed into one that used cubic curves. Suppose that \({\mathop{\rm w}\nolimits} \left( t \right)\) is a quadratic curve, with control points \({{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},\) and \({{\mathop{\rm p}\nolimits} _2}\).

  1. Find control points \({{\mathop{\rm r}\nolimits} _0},{{\mathop{\rm r}\nolimits} _1},{{\mathop{\rm r}\nolimits} _2},\), and \({{\mathop{\rm r}\nolimits} _3}\) such that the cubic Bezier curve \({\mathop{\rm x}\nolimits} \left( t \right)\) with these control points has the property that \({\mathop{\rm x}\nolimits} \left( t \right)\) and \({\mathop{\rm w}\nolimits} \left( t \right)\) have the same initial and terminal points and the same tangent vectors at \(t = 0\)and\(t = 1\). (See Exercise 16.)
  1. Show that if \({\mathop{\rm x}\nolimits} \left( t \right)\) is constructed as in part (a), then \({\mathop{\rm x}\nolimits} \left( t \right) = {\mathop{\rm w}\nolimits} \left( t \right)\) for \(0 \le t \le 1\).

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

9.

a. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1} - {{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _2},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _2}} \right\}\) is linearly dependent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent. (Read this carefully.)

b. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set of homogeneous forms \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent.

c. A finite set of points \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is affinely dependent if there exist real numbers \({c_1},...,{c_k}\) , not all zero, such that \({c_1} + ... + {c_k} = 1\) and \({c_1}{{\mathop{\rm v}\nolimits} _1} + ... + {c_k}{{\mathop{\rm v}\nolimits} _k} = 0\).

d. If \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely independent set in \({\mathbb{R}^n}\) and if p in \({\mathbb{R}^n}\) has a negative barycentric coordinate determined by S, then p is not in \({\mathop{\rm aff}\nolimits} S\).

e.

If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},a,\) and \(b\) are in \({\mathbb{R}^3}\) and if ray \({\mathop{\rm a}\nolimits} + t{\mathop{\rm b}\nolimits} \) for \(t \ge 0\) intersects the triangle with vertices \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},\) and \({{\mathop{\rm v}\nolimits} _3}\) then the barycentric coordinates of the intersection points are all nonnegative.

Question: In Exercise 7, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{4}}\\{\bf{1}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{ - {\bf{2}}}\\{\bf{5}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free