In Exercises 1-4, write y as an affine combination of the other point listed, if possible.

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{2}}\\{\bf{0}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{6}}}\\{\bf{7}}\end{aligned}} \right)\), \({{\bf{v}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}\\{\bf{3}}\\{\bf{1}}\end{aligned}} \right)\), \({\bf{y}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{3}}}\\{\bf{4}}\\{ - {\bf{4}}}\end{aligned}} \right)\)

Short Answer

Expert verified

The affine combination is \({\bf{y}} = \frac{1}{5}{{\bf{v}}_1} - \frac{2}{5}{{\bf{v}}_2} + \frac{6}{5}{{\bf{v}}_3}\).

Step by step solution

01

Find the translated point

Write the translated points as shown below:

\({{\bf{v}}_2} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}1\\8\\{ - 7}\end{aligned}} \right)\)

\({{\bf{v}}_3} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}3\\1\\1\end{aligned}} \right)\)

\({\bf{y}} - {{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}{ - 4}\\2\\4\end{aligned}} \right)\)

Write the equation by using the translated matrix as shown below:

\(\begin{aligned}{c}{\bf{y}} - {{\bf{v}}_1} = {c_2}\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + {c_3}\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right)\\\left( {\begin{aligned}{*{20}{c}}{ - 4}\\2\\4\end{aligned}} \right) = {c_2}\left( {\begin{aligned}{*{20}{c}}1\\{ - 8}\\7\end{aligned}} \right) + {c_3}\left( {\begin{aligned}{*{20}{c}}3\\1\\1\end{aligned}} \right)\end{aligned}\)

02

Write the augmented matrix

The augmented matrix can be written as shown below:

\(M = \left( {\begin{aligned}{*{20}{c}}1&3&{ - 4}\\{ - 8}&1&2\\7&1&{ - 4}\end{aligned}} \right)\)

Row reduce the augmented matrix as shown below:

\(\begin{aligned}{c}M = \left( {\begin{aligned}{*{20}{c}}1&3&{ - 4}\\{ - 8}&1&2\\7&1&{ - 4}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&3&{ - 4}\\0&{25}&{ - 30}\\0&{ - 20}&{24}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \begin{aligned}{l}{R_2} \to {R_2} + 8{R_1}\\{R_3} \to {R_3} - 7{R_1}\end{aligned} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&3&{ - 4}\\0&5&{ - 6}\\0&{ - 10}&{12}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \begin{aligned}{l}{R_2} \to \frac{1}{5}{R_2}\\{R_3} \to \frac{1}{2}{R_3}\end{aligned} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&3&{ - 4}\\0&1&{ - \frac{6}{5}}\\0&0&0\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \begin{aligned}{l}{R_3} \to {R_3} + 2{R_2}\\{R_2} \to \frac{1}{5}{R_2}\end{aligned} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&0&{ - \frac{2}{5}}\\0&1&{\frac{6}{5}}\\0&0&0\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to {R_1} - 3{R_2}} \right)\end{aligned}\)

03

Write the system of equations

From the augmented matrix, the system of the equation is shown below:

\({c_2} = - \frac{2}{5}\)

And,

\({c_3} = \frac{6}{5}\)

Substitute the values in the equation of translated points as shown below:

\(\begin{aligned}{c}{\bf{y}} - {{\bf{v}}_1} = - \frac{2}{5}\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + \frac{6}{5}\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right)\\{\bf{y}} = {{\bf{v}}_1} - \frac{2}{5}{{\bf{v}}_2} + \frac{2}{5}{{\bf{v}}_1} + \frac{6}{5}{{\bf{v}}_3} - \frac{6}{5}{{\bf{v}}_1}\\{\bf{y}} = \frac{1}{5}{{\bf{v}}_1} - \frac{2}{5}{{\bf{v}}_2} + \frac{6}{5}{{\bf{v}}_3}\end{aligned}\)

So, the vector \({\bf{y}}\) is \(\frac{1}{5}{{\bf{v}}_1} - \frac{2}{5}{{\bf{v}}_2} + \frac{6}{5}{{\bf{v}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

1.\(\left( {\begin{aligned}{{}}3\\{ - 3}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\6\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\0\end{aligned}} \right)\)

Find an example in \({\mathbb{R}^2}\) to show that equality need not hold in the statement of Exercise 23.

Question: In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{array}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{array}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each is given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{ - {\bf{19}}}\\{\bf{5}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{{\bf{1}}.{\bf{5}}}\\{ - {\bf{1}}.{\bf{3}}}\\{ - .{\bf{5}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{4}}}\\{\bf{0}}\end{array}} \right)\)

Question: Let \({{\bf{a}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{1}}}\\{\bf{5}}\end{array}} \right)\), \({{\bf{a}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right)\), \({{\bf{a}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{6}}\\{\bf{0}}\end{array}} \right)\), \({{\bf{b}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{5}}\\{ - {\bf{1}}}\end{array}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{ - {\bf{2}}}\end{array}} \right)\),\({{\bf{b}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{2}}\\{\bf{1}}\end{array}} \right)\) and \({\bf{n}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right)\), and let \(A = \left\{ {{{\bf{a}}_{\bf{1}}},{{\bf{a}}_{\bf{2}}},{{\bf{a}}_{\bf{3}}}} \right\}\) and \(B = \left\{ {{{\bf{b}}_{\bf{1}}},{{\bf{b}}_{\bf{2}}},{{\bf{b}}_{\bf{3}}}} \right\}\). Find a hyperplane H with normal n that separates A and B. Is there a hyperplane parallel to H that strictly separates A and B?

Question: 17. Choose a set \(S\) of three points such that aff \(S\) is the plane in \({\mathbb{R}^3}\) whose equation is \({x_3} = 5\). Justify your work.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free