Chapter 8: Q4E (page 437)
Question: In Exercise 4, determine whether each set is open or closed or neither open nor closed.
4. a. \(\left\{ {\left( {x,y} \right):{x^{\bf{2}}} + {y^{\bf{2}}} = {\bf{1}}} \right\}\)
b. \(\left\{ {\left( {x,y} \right):{x^{\bf{2}}} + {y^{\bf{2}}} > {\bf{1}}} \right\}\)
c. \(\left\{ {\left( {x,y} \right):{x^{\bf{2}}} + {y^{\bf{2}}} \le {\bf{1}}\,\,\,and\,\,y > {\bf{0}}} \right\}\)
d. \(\left\{ {\left( {x,y} \right):y \ge {x^{\bf{2}}}} \right\}\)
e. \(\left\{ {\left( {x,y} \right):y < {x^{\bf{2}}}} \right\}\)
Short Answer
- Closed
- Open
- Neither open nor closed
- Closed
- Open