In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{aligned}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{aligned}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each of the given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{8}}\\{\bf{4}}\end{aligned}} \right)\)

b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{6}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right)\)

c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{ - {\bf{1}}}\\{ - {\bf{5}}}\end{aligned}} \right)\)

Short Answer

Expert verified

a. \({{\bf{p}}_1} = 3\left( {{{\bf{b}}_1}} \right) - 1\left( {{{\bf{b}}_2}} \right) - 1\left( {{{\bf{b}}_3}} \right) \in {\rm{aff}}\,\,S\), the sum of coefficients of in S 1.

b. \({{\bf{p}}_2} = 2\left( {{{\bf{b}}_1}} \right) + 0\left( {{{\bf{b}}_2}} \right) + 1\left( {{{\bf{b}}_3}} \right) \notin {\rm{aff}}\,S\), the sum of coefficients of in S is not 1.

c. \({{\bf{p}}_3} = - 1\left( {{{\bf{b}}_1}} \right) + 2\left( {{{\bf{b}}_2}} \right) + 0\left( {{{\bf{b}}_3}} \right) \in {\rm{aff}}\,S\), the sum of coefficients of in S 1.

Step by step solution

01

Find the augmented matrix

Write the augmented matrix by using the given points as shown below:

\(\begin{aligned}{c}M = \left( {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}&{{{\bf{p}}_1}}&{{{\bf{p}}_2}}&{{{\bf{p}}_3}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}2&1&2&3&6&0\\1&0&{ - 5}&8&{ - 3}&{ - 1}\\1&{ - 2}&1&4&3&{ - 5}\end{aligned}} \right)\end{aligned}\)

02

Obtain the row reduced form of the augmented matrix

Write the augmented matrix as shown below:

\(\begin{aligned}{c}M = \left( {\begin{aligned}{*{20}{c}}0&1&{12}&{ - 13}&{12}&2\\1&0&{ - 5}&8&{ - 3}&{ - 1}\\0&{ - 2}&6&{ - 4}&6&{ - 4}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{aligned}{l}{R_1} \to {R_1} - 2{R_2}\\{R_3} \to {R_3} - {R_2}\end{aligned} \right\}\\ = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 5}&8&{ - 3}&{ - 1}\\0&1&{12}&{ - 13}&{12}&2\\0&{ - 2}&6&4&6&{ - 4}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_1} \leftrightarrow {R_2}} \right\}\\ = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 5}&8&{ - 3}&{ - 1}\\0&1&{12}&{ - 13}&{12}&2\\0&1&{ - 3}&2&{ - 3}&2\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_3} \to - \frac{1}{2}{R_3}} \right\}\\ = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 5}&8&{ - 3}&{ - 1}\\0&1&{12}&{ - 13}&{12}&2\\0&0&{ - 15}&{15}&{ - 15}&0\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_3} \to {R_3} - {R_2}} \right\}\\ = \left( {\begin{aligned}{*{20}{c}}1&0&{ - 5}&8&{ - 3}&{ - 1}\\0&1&{12}&{ - 13}&{12}&2\\0&0&1&{ - 1}&1&0\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_3} \to - \frac{1}{{15}}{R_3}} \right\}\\ = \left( {\begin{aligned}{*{20}{c}}1&0&0&3&2&{ - 1}\\0&1&0&{ - 1}&0&2\\0&0&1&{ - 1}&1&0\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{aligned}{l}{R_1} \to {R_1} + 5{R_3}\\{R_2} \to {R_2} - 12{R_3}\end{aligned} \right\}\end{aligned}\)

03

Check for the affine combination of \({{\bf{p}}_{\bf{1}}}\)

Use the augmented matrix \({{\bf{p}}_1}\) that can be expressed as shown below:

\({{\bf{p}}_1} = 3\left( {{{\bf{b}}_1}} \right) - 1\left( {{{\bf{b}}_2}} \right) - 1\left( {{{\bf{b}}_3}} \right)\)

The sum of coefficients is \(3 - 1 - 1 = 1\).

Thus, \({{\bf{p}}_1}\) is an affine combination of point in set S.

\({{\bf{p}}_1} = 3\left( {{{\bf{b}}_1}} \right) - 1\left( {{{\bf{b}}_2}} \right) - 1\left( {{{\bf{b}}_3}} \right)\)

04

Check for the affine combination of \({{\bf{p}}_{\bf{2}}}\)

Use the augmented matrix \({{\bf{p}}_2}\) that can be expressed as shown below:

\({{\bf{p}}_2} = 2\left( {{{\bf{b}}_1}} \right) + 0\left( {{{\bf{b}}_2}} \right) + 1\left( {{{\bf{b}}_3}} \right)\)

The sum of the coefficients is \(2 + 0 + 1 = 3 \ne 1\).

So, \({{\bf{p}}_2}\) is not an affine combination of point in set S.

05

Check for the affine combination of \({{\bf{p}}_{\bf{3}}}\)

Use the augmented matrix \({{\bf{p}}_3}\) that can be expressed as shown below:

\({{\bf{p}}_3} = - 1\left( {{{\bf{b}}_1}} \right) + 2\left( {{{\bf{b}}_2}} \right) + 0\left( {{{\bf{b}}_3}} \right)\)

The sum of the coefficients is \( - 1 + 2 + 0 = 1\).

So, \({{\bf{p}}_3}\) is an affine combination of point in set S.

\({{\bf{p}}_3} = - 1\left( {{{\bf{b}}_1}} \right) + 2\left( {{{\bf{b}}_2}} \right) + 0\left( {{{\bf{b}}_3}} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) be cubic Bézier curves with control points \(\left\{ {{{\bf{p}}_{\bf{o}}}{\bf{,}}{{\bf{p}}_{\bf{1}}}{\bf{,}}{{\bf{p}}_{\bf{2}}}{\bf{,}}{{\bf{p}}_{\bf{3}}}} \right\}\)and \(\left\{ {{{\bf{p}}_{\bf{3}}}{\bf{,}}{{\bf{p}}_{\bf{4}}}{\bf{,}}{{\bf{p}}_{\bf{5}}}{\bf{,}}{{\bf{p}}_{\bf{6}}}} \right\}\) respectively, so that \({\bf{x}}\left( t \right)\) and \({\bf{y}}\left( t \right)\) are joined at \({{\bf{p}}_3}\) . The following questions refer to the curve consisting of \({\bf{x}}\left( t \right)\) followed by \(y\left( t \right)\). For simplicity, assume that the curve is in \({\mathbb{R}^2}\).

a. What condition on the control points will guarantee that the curve has \({C^1}\) continuity at \({{\bf{p}}_3}\) ? Justify your answer.

b. What happens when \({\bf{x'}}\left( 1 \right)\) and \({\bf{y'}}\left( 1 \right)\) are both the zero vector?

Question:In Exercises 21 and 22, mark each statement True or False. Justify each answer.

21. a. A linear transformation from\(\mathbb{R}\)to\({\mathbb{R}^n}\)is called a linear functional.

b. If\(f\)is a linear functional defined on\({\mathbb{R}^n}\), then there exists a real number\(k\)such that\(f\left( x \right) = kx\)for all\(x\)in\({\mathbb{R}^n}\).

c. If a hyper plane strictly separates sets\(A\)and\(B\), then\(A \cap B = \emptyset \)

d. If\(A\)and\(B\)are closed convex sets and\(A \cap B = \emptyset \), then there exists a hyper plane that strictly separate\(A\)and\(B\).

Show that a set\(\left\{ {{{\bf{v}}_{\bf{1}}},...,{{\bf{v}}_p}} \right\}\)in\({\mathbb{R}^{\bf{n}}}\)is affinely dependent when \(p \ge n + 2\).

Question: Suppose that the solutions of an equation \(A{\bf{x}} = {\bf{b}}\) are all of the form \({\bf{x}} = {x_{\bf{3}}}{\bf{u}} + {\bf{p}}\), where \({\bf{u}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right)\) and \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{\bf{4}}\end{array}} \right)\). Find points \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) such that the solution set of \(A{\bf{x}} = {\bf{b}}\) is \({\bf{aff}}\left\{ {{{\bf{v}}_{\bf{1}}},\,{{\bf{v}}_{\bf{2}}}} \right\}\).

Let\(\left\{ {{p_1},{p_2},{p_3}} \right\}\)be an affinely dependent set of points in\({\mathbb{R}^{\bf{n}}}\)and let\(f:{\mathbb{R}^{\bf{n}}} \to {\mathbb{R}^{\bf{m}}}\)be a linear transformation. Show that\(\left\{ {f\left( {{{\bf{p}}_1}} \right),f\left( {{{\bf{p}}_2}} \right),f\left( {{{\bf{p}}_3}} \right)} \right\}\)is affinely dependent in\({\mathbb{R}^{\bf{m}}}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free