Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\bf{x}} \le {\bf{b}}\) and \({\bf{x}} \ge {\bf{0}}\).

5. \(A = \left( {\begin{array}{*{20}{c}}1&2\\3&1\end{array}} \right),{\rm{ }}{\bf{b}} = \left( {\begin{array}{*{20}{c}}{{\bf{10}}}\\{{\bf{15}}}\end{array}} \right)\)

Short Answer

Expert verified

The minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}5\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\3\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\5\end{array}} \right)} \right\}\).

Step by step solution

01

The two inequalities in \(A{\bf{x}} \le {\bf{b}}\)

The matrix inequalities \(A{\bf{x}} \le {\bf{b}}\) yield the following system of inequalities:

  1. \({{\mathop{\rm x}\nolimits} _1} + 2{{\mathop{\rm x}\nolimits} _2} \le 10\)
  2. \(3{{\mathop{\rm x}\nolimits} _1} + {{\mathop{\rm x}\nolimits} _2} \le 15\)
02

Determine the \({{\bf{x}}_1}\)-intercept and \({{\bf{x}}_2}\)-intercept of the two lines

The condition \({\mathop{\rm x}\nolimits} \ge 0\) places polytope \(P\) in the first quadrant of the plane. One vertex is \(\left( {0,0} \right)\).

The \({{\mathop{\rm x}\nolimits} _1}\)-intercepts \(\left( {{\mathop{\rm If}\nolimits} {\rm{ }}{{\mathop{\rm x}\nolimits} _2} = 0} \right)\) of the two lines are 10 and 5, so \(\left( {5,0} \right)\) is a vertex.

The \({{\mathop{\rm x}\nolimits} _2}\)-intercepts\(\left( {{\mathop{\rm If}\nolimits} {\rm{ }}{{\mathop{\rm x}\nolimits} _1} = 0} \right)\) of the two lines are 5 and 15, then \(\left( {0,5} \right)\) is a vertex.

03

Determine the intersection point corresponds to inequalities

The intersection of (a) is at \({{\mathop{\rm P}\nolimits} _{\mathop{\rm a}\nolimits} } = \left( {4,3} \right)\). Testing \({{\mathop{\rm P}\nolimits} _a}\) in (b) gives \(3\left( 4 \right) + 3 = 15\), so \({{\mathop{\rm P}\nolimits} _a}\) is in \({\mathop{\rm P}\nolimits} \).

04

Determine the minimal representation of the polytope

The four vertices of the polytope are \(\left( {0,0} \right),\left( {5,0} \right)\left( {4,3} \right),\,\,{\mathop{\rm and}\nolimits} \,\,\left( {0,5} \right)\).

Thus, the minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}5\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\3\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\5\end{array}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 13. Suppose \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a basis for \({\mathbb{R}^3}\). Show that Span \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\) is a plane in \({\mathbb{R}^3}\). (Hint: What can you say about \({\rm{u}}\) and \({\rm{v}}\)when Span \(\left\{ {{\rm{u,v}}} \right\}\) is a plane?)

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let A be the \({\bf{1}} \times {\bf{4}}\) matrix \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{ - {\bf{3}}}&{\bf{4}}&{ - {\bf{2}}}\end{array}} \right)\) and let \(b = {\bf{5}}\). Let \(H = \left\{ {{\bf{x}}\,\,{\rm{in}}\,{\mathbb{R}^{\bf{4}}}:A{\bf{x}} = {\bf{b}}} \right\}\).

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

10.a. If \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely dependent set in \({\mathbb{R}^n}\), then the set \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) of homogeneous forms may be linearly independent.

b. If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) and \({{\mathop{\rm v}\nolimits} _4}\) are in \({\mathbb{R}^3}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}} \right\}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}\) is affinely independent.

c. Given \(S = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}} \right\}\) in \({\mathbb{R}^n}\), each \({\bf{p}}\) in\({\mathop{\rm aff}\nolimits} S\) has a unique representation as an affine combination of \({{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}\).

d. When color information is specified at each vertex \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) of a triangle in \({\mathbb{R}^3}\), then the color may be interpolated at a point p in \({\mathop{\rm aff}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}\) using the barycentric coordinates of p.

e. If T is a triangle in \({\mathbb{R}^2}\) and if a point p is on edge of the triangle, then the barycentric coordinates of p (for this triangle) are not all positive.

In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{aligned}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{aligned}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each of the given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{8}}\\{\bf{4}}\end{aligned}} \right)\)

b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{6}}\\{ - {\bf{3}}}\\{\bf{3}}\end{aligned}} \right)\)

c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}\\{ - {\bf{1}}}\\{ - {\bf{5}}}\end{aligned}} \right)\)

Find an example in \({\mathbb{R}^2}\) to show that equality need not hold in the statement of Exercise 25.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free