In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

6.\(\left( {\begin{aligned}{{}}1\\3\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{ - 1}\\{ - 2}\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\5\\2\end{aligned}} \right),\left( {\begin{aligned}{{}}3\\5\\0\end{aligned}} \right)\)

Short Answer

Expert verified

The set of points are affinely independent.

Step by step solution

01

Condition for affinely dependent

The set is said to be affinely dependent, if the set \(\left\{ {{{\bf{v}}_{\bf{1}}},{{\bf{v}}_{\bf{2}}},...,{{\bf{v}}_p}} \right\}\) in the dimension \({\mathbb{R}^n}\) exists such that \({c_1},{c_2},...,{c_p}\) not all zero, and the sum must be zero \({c_1} + {c_2} + ... + {c_p} = 0\), and \({c_1}{{\bf{v}}_1} + {c_2}{{\bf{v}}_2} + ... + {c_p}{{\bf{v}}_p} = 0\).

02

Compute \({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}\), \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}\)

Let \({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}1\\3\\1\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{aligned}{{}}0\\{ - 1}\\{ - 2}\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{aligned}{{}}2\\5\\2\end{aligned}} \right),{{\mathop{\rm v}\nolimits} _4} = \left( {\begin{aligned}{{}}3\\5\\0\end{aligned}} \right)\).

Compute \({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}\), \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}\), and \({{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}\) as shown below:

\({{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}{ - 1}\\{ - 4}\\{ - 3}\end{aligned}} \right)\), \({{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}1\\2\\1\end{aligned}} \right)\), \({{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{{}}2\\2\\{ - 1}\end{aligned}} \right)\)

Write the augmented matrix as shown below:

\(\left( {\begin{aligned}{{}}{{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1}}&{{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1}}&{{{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}}\end{aligned}} \right) \sim \left( {\begin{aligned}{{}}{ - 1}&1&2\\{ - 4}&2&2\\{ - 3}&1&{ - 1}\end{aligned}} \right)\)

03

Apply row operations

At row 1, multiply row 1 by \( - 1\).

\( \sim \left( {\begin{aligned}{{}}1&{ - 1}&{ - 2}\\{ - 4}&2&2\\{ - 3}&1&{ - 1}\end{aligned}} \right)\)

At row 2, multiply row 1 by 4 and add it to row 2. At row 3, multiply row 1 by 3 and add it to row 3.

\( \sim \left( {\begin{aligned}{{}}1&{ - 1}&{ - 2}\\0&{ - 2}&{ - 10}\\0&{ - 2}&{ - 7}\end{aligned}} \right)\)

At row 2, multiply row 2 by \( - \frac{1}{2}\).

\( \sim \left( {\begin{aligned}{{}}1&{ - 1}&{ - 2}\\0&1&5\\0&{ - 2}&{ - 7}\end{aligned}} \right)\)

At row 1, add row 1 and row 2.

\( \sim \left( {\begin{aligned}{{}}1&0&3\\0&1&5\\0&{ - 2}&{ - 7}\end{aligned}} \right)\)

At row 3, multiply row 2 by 2 and add it to row 3.

\( \sim \left( {\begin{aligned}{{}}1&0&3\\0&1&5\\0&0&3\end{aligned}} \right)\)

At row 3, multiply row 3 by \(\frac{1}{3}\).

\( \sim \left( {\begin{aligned}{{}}1&0&3\\0&1&5\\0&0&1\end{aligned}} \right)\)

At row 1, multiply row 3 by 3 and subtract it from row 1. At row 2, multiply row 3 by 5 and remove it from row 2.

\( \sim \left( {\begin{aligned}{{}}1&0&0\\0&1&0\\0&0&1\end{aligned}} \right)\)

The columns are linearly independent because every column is a pivot column.

04

Determine whether the set of points is affinely dependent

Theorem 5states that an indexed set \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) in \({\mathbb{R}^n}\), with \(p \ge 2\), the following statement is equivalent. This means that either all the statements are true or all the statements are false.

  1. The set \(S\) isaffinely dependent.
  2. Each of the points in \(S\)is an affine combination of the other points in \(S\).
  3. In \({\mathbb{R}^n}\), the set \(\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _1}} \right\}\)is linearly dependent.
  4. The set \(\left\{ {{{\bar v}_1},...,{{\bar v}_p}} \right\}\) of homogeneous forms in \({\mathbb{R}^{n + 1}}\) is linearly dependent.

Therefore, all statement in theorem 5 is false, and the set \(S\)is affinelyindependent.

Thus, the set of points are affinely independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that\(\left\{ {{p_1},{p_2},{p_3}} \right\}\)is an affinely independent set in\({\mathbb{R}^{\bf{n}}}\)and q is an arbitrary point in\({\mathbb{R}^{\bf{n}}}\). Show that the translated set\(\left\{ {{p_1} + q,{p_2} + q,{p_3} + {\bf{q}}} \right\}\)is also affinely independent.

Question: In Exercise 9, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

9. \(\left( {\begin{array}{*{20}{c}}1\\0\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\3\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\2\\2\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}1\\1\\1\\1\end{array}} \right)\)

Question: In Exercise 7, let Hbe the hyperplane through the listed points. (a) Find a vector n that is normal to the hyperplane. (b) Find a linear functional f and a real number d such that \(H = \left( {f:d} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{4}}\\{\bf{1}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{ - {\bf{2}}}\\{\bf{5}}\end{array}} \right)\)

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left) {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the plane in \({\mathbb{R}^{\bf{3}}}\) spanned by the rows of \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{4}}&{ - {\bf{5}}}\\{\bf{0}}&{ - {\bf{2}}}&{\bf{8}}\end{array}} \right)\). That is, \(H = {\bf{Row}}\,B\).

Question: 16. Let \({\rm{v}} \in {\mathbb{R}^n}\)and let \(k \in \mathbb{R}\). Prove that \(S = \left\{ {{\rm{x}} \in {\mathbb{R}^n}:{\rm{x}} \cdot {\rm{v}} = k} \right\}\)is an affine subset of \({\mathbb{R}^n}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free