Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) and \({\mathop{\rm x}\nolimits} \ge 0\).

6. \(A = \left( {\begin{array}{*{20}{c}}2&3\\4&1\end{array}} \right),{\rm{ }}{\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}{18}\\{16}\end{array}} \right)\)

Short Answer

Expert verified

The minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\4\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\6\end{array}} \right)} \right\}\).

Step by step solution

01

The two inequalities in \(A{\mathop{\rm x}\nolimits}  \le {\mathop{\rm b}\nolimits} \)

The matrix inequalities \(A{\bf{x}} \le {\bf{b}}\) yield the following system of inequalities:

  1. \(2{{\mathop{\rm x}\nolimits} _1} + 3{{\mathop{\rm x}\nolimits} _2} \le 18\)
  2. \(4{{\mathop{\rm x}\nolimits} _1} + {{\mathop{\rm x}\nolimits} _2} \le 16\)
02

Determine the \({{\mathop{\rm x}\nolimits} _1}\)-intercept and \({{\mathop{\rm x}\nolimits} _2}\)-intercept of the two lines

The condition \({\mathop{\rm x}\nolimits} \ge 0\) places polytope \(P\) in the first quadrant of the plane. One vertex is \(\left( {0,0} \right)\).

The \({{\mathop{\rm x}\nolimits} _1}\)-intercepts\(\left( {{\mathop{\rm If}\nolimits} {{\mathop{\rm x}\nolimits} _2} = 0} \right)\) of the two lines are 9 and 4, so \(\left( {4,0} \right)\) is a vertex.

The \({{\mathop{\rm x}\nolimits} _2}\)-intercepts\(\left( {{\mathop{\rm If}\nolimits} {{\mathop{\rm x}\nolimits} _1} = 0} \right)\) of the two lines are 6 and 16, then \(\left( {0,6} \right)\) is a vertex.

03

Determine the intersection point corresponds to inequalities

The intersection of (a) is at \({{\mathop{\rm P}\nolimits} _{\mathop{\rm a}\nolimits} } = \left( {3,4} \right)\). Testing \({{\mathop{\rm P}\nolimits} _a}\) in (b) gives \(4\left( 3 \right) + 4 = 16\), so \({{\mathop{\rm P}\nolimits} _a}\) is in \({\mathop{\rm P}\nolimits} \).

04

Determine the minimal representation of the polytope

The set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},..,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is aminimal representation of the polytope\(P\)when \(P = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) and for each \(i = 1,...,k\), \({{\mathop{\rm v}\nolimits} _1} \notin \left\{ {{{\mathop{\rm v}\nolimits} _j}:j \ne i} \right\}\).

The four vertices of the polytope are \(\left( {0,0} \right),\left( {4,0} \right)\left( {3,4} \right),\,\,{\mathop{\rm and}\nolimits} \,\,\left( {0,6} \right)\).

Thus, the minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\4\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\6\end{array}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({\bf{x}}\left( t \right)\) be a B-spline in Exercise 2, with control points \({{\bf{p}}_o}\), \({{\bf{p}}_1}\) , \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\).

a. Compute the tangent vector \({\bf{x}}'\left( t \right)\) and determine how the derivatives \({\bf{x}}'\left( 0 \right)\) and \({\bf{x}}'\left( 1 \right)\) are related to the control points. Give geometric descriptions of the directions of these tangent vectors. Explore what happens when both \({\bf{x}}'\left( 0 \right)\)and \({\bf{x}}'\left( 1 \right)\)equal 0. Justify your assertions.

b. Compute the second derivative and determine how and are related to the control points. Draw a figure based on Figure 10, and construct a line segment that points in the direction of . [Hint: Use \({{\bf{p}}_2}\) as the origin of the coordinate system.]

Question: 30. Prove that the convex hull of a bounded set is bounded.

Let\(T\)be a tetrahedron in “standard” position, with three edges along the three positive coordinate axes in\({\mathbb{R}^3}\), and suppose the vertices are\(a{{\bf{e}}_1}\),\(b{{\bf{e}}_2}\),\(c{{\bf{e}}_{\bf{3}}}\), and 0, where\(\left[ {\begin{array}{*{20}{c}}{{{\bf{e}}_1}}&{{{\bf{e}}_2}}&{{{\bf{e}}_3}}\end{array}} \right] = {I_3}\). Find formulas for the barycentric coordinates of an arbitrary point\({\bf{p}}\)in\({\mathbb{R}^3}\).

Question: 18. Choose a set \(S\) of four points in \({\mathbb{R}^3}\) such that aff \(S\) is the plane \(2{x_1} + {x_2} - 3{x_3} = 12\). Justify your work.

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice problem 2.) If so, construct an affine dependence relation for the points.

2.\(\left( {\begin{aligned}{{}}2\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}5\\4\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 3}\\{ - 2}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free