In Exercises 7 and 8, find the barycentric coordinates of p with respect to the affinely independent set of points that precedes it.

7. \(\left( {\begin{array}{{}}1\\{ - 1}\\2\\1\end{array}} \right),\left( {\begin{array}{{}}2\\1\\0\\1\end{array}} \right),\left( {\begin{array}{{}}1\\2\\{ - 2}\\0\end{array}} \right)\), \({\mathop{\rm p}\nolimits} = \left( {\begin{array}{{}}5\\4\\{ - 2}\\2\end{array}} \right)\)

Short Answer

Expert verified

The barycentric coordinates are \(\left( { - 2,4, - 1} \right)\).

Step by step solution

01

The barycentric coordinates

Consider the set \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\)as an affinely independent.So, for every point \({\mathop{\rm p}\nolimits} \) in \({\mathop{\rm aff}\nolimits} S\), the coefficients \({c_1},...,{c_k}\) in the unique representation (7) of \({\mathop{\rm p}\nolimits} \) are referred to as barycentric coordinates(or sometimes, affine) of \({\mathop{\rm p}\nolimits} \).

02

Write the augmented matrix

Move the last row of ones to the top to simplify the arithmetic.

Write the augmented matrix as shown below:

\(\left( {\begin{array}{{}}{\widetilde {{{\bf{v}}_1}}}&{\widetilde {{{\bf{v}}_2}}}&{\widetilde {{{\bf{v}}_3}}}&{\widetilde {\bf{p}}}\end{array}} \right) \sim \left( {\begin{array}{{}}1&2&1&5\\{ - 1}&1&2&4\\2&0&{ - 2}&{ - 2}\\1&1&0&2\\1&1&1&1\end{array}} \right)\)

03

Apply row operation

At row 2, add row 1 and row 2.

\( \sim \left( {\begin{array}{{}}1&2&1&5\\0&3&3&9\\2&0&{ - 2}&{ - 2}\\1&1&0&2\\1&1&1&1\end{array}} \right)\)

At row 3, multiply row 1 by 2 and subtract it from row 3.

\( \sim \left( {\begin{array}{{}}1&2&1&5\\0&3&3&9\\0&{ - 4}&{ - 4}&{ - 12}\\1&1&0&2\\1&1&1&1\end{array}} \right)\)

At row 4, subtract row 1 from row 4.

\( \sim \left( {\begin{array}{{}}1&2&1&5\\0&3&3&9\\0&{ - 4}&{ - 4}&{ - 12}\\0&{ - 1}&{ - 1}&{ - 3}\\1&1&1&1\end{array}} \right)\)

At row 5, subtract row 1 from row 5.

\( \sim \left( {\begin{array}{{}}1&2&1&5\\0&3&3&9\\0&{ - 4}&{ - 4}&{ - 12}\\0&{ - 1}&{ - 1}&{ - 3}\\0&{ - 1}&0&{ - 4}\end{array}} \right)\)

At row 2, multiply row 2 by \(\frac{1}{3}\).

\( \sim \left( {\begin{array}{{}}1&2&1&5\\0&1&1&3\\0&{ - 4}&{ - 4}&{ - 12}\\0&{ - 1}&{ - 1}&{ - 3}\\0&{ - 1}&0&{ - 4}\end{array}} \right)\)

At row 3, multiply row 2 by 4 and add it row 3.

\( \sim \left( {\begin{array}{{}}1&2&1&5\\0&1&1&3\\0&0&0&0\\0&{ - 1}&{ - 1}&{ - 3}\\0&{ - 1}&0&{ - 4}\end{array}} \right)\)

At row 4, add row 4 and row 2.

\( \sim \left( {\begin{array}{{}}1&2&1&5\\0&1&1&3\\0&0&0&0\\0&0&0&0\\0&{ - 1}&0&{ - 4}\end{array}} \right)\)

At row 5, add row 5 and row 2.

\( \sim \left( {\begin{array}{{}}1&2&1&5\\0&1&1&3\\0&0&0&0\\0&0&0&0\\0&0&1&{ - 1}\end{array}} \right)\)

Interchange row 5 and row 3.

\( \sim \left( {\begin{array}{{}}1&2&1&5\\0&1&1&3\\0&0&1&{ - 1}\\0&0&0&0\\0&0&0&0\end{array}} \right)\)

04

Determine the barycentric coordinates of p

Convert the matrix into the system of equations as shown below

\(\begin{array}{r}{{\mathop{\rm x}\nolimits} _1} + {{\mathop{\rm x}\nolimits} _2} + {{\mathop{\rm x}\nolimits} _3} = 5\\{{\mathop{\rm x}\nolimits} _2} + {{\mathop{\rm x}\nolimits} _3} = 3\\{{\mathop{\rm x}\nolimits} _3} = - 1\end{array}\)

Solve the system of the equation to obtain as shown below

\({{\mathop{\rm x}\nolimits} _1} = - 2,{\rm{ }}{{\mathop{\rm x}\nolimits} _2} = 4,{\rm{ }}{{\mathop{\rm x}\nolimits} _3} = - 1\)

The coordinates are \( - 2,4,\,\,\,{\mathop{\rm and}\nolimits} \,\, - 1\), so \({\bf{p}} = - 2{{\bf{v}}_1} + 4{{\bf{v}}_2} - {{\bf{v}}_3}\).

Thus, the barycentric coordinates are \(\left( { - 2,4, - 1} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 13. Suppose \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a basis for \({\mathbb{R}^3}\). Show that Span \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\) is a plane in \({\mathbb{R}^3}\). (Hint: What can you say about \({\rm{u}}\) and \({\rm{v}}\)when Span \(\left\{ {{\rm{u,v}}} \right\}\) is a plane?)

Explain why any set of five or more points in \({\mathbb{R}^3}\) must be affinely dependent.

Question: Let \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{\bf{0}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{1}}}\\{\bf{0}}\\{\bf{4}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{3}}}\\{\bf{5}}\\{\bf{3}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{9}}}\\{{\bf{10}}}\\{\bf{9}}\\{ - {\bf{13}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{2}}\\{\bf{8}}\\{\bf{5}}\end{array}} \right)\)

and \(S = \left\{ {{{\bf{v}}_1},\,\,{{\bf{v}}_2},\,{{\bf{v}}_3}} \right\}\). It can be shown that S is linearly independent.

a. Is \({{\bf{p}}_{\bf{1}}}\) is span S? Is \({{\bf{p}}_{\bf{1}}}\) is \({\bf{aff}}\,S\)?

b. Is \({{\bf{p}}_{\bf{2}}}\) is span S? Is \({{\bf{p}}_{\bf{2}}}\) is \({\bf{aff}}\,S\)?

c. Is \({{\bf{p}}_{\bf{3}}}\) is span S? Is \({{\bf{p}}_{\bf{3}}}\) is \({\bf{aff}}\,S\)?

Question: Suppose that the solutions of an equation \(A{\bf{x}} = {\bf{b}}\) are all of the form \({\bf{x}} = {x_{\bf{3}}}{\bf{u}} + {\bf{p}}\), where \({\bf{u}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{2}}}\end{array}} \right)\) and \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{3}}}\\{\bf{0}}\end{array}} \right)\). Find points \({{\bf{v}}_{\bf{1}}}\) and \({{\bf{v}}_{\bf{2}}}\) such that the solution set of \(A{\bf{x}} = {\bf{b}}\) is \({\bf{aff}}\left\{ {{{\bf{v}}_{\bf{1}}},\,{{\bf{v}}_{\bf{2}}}} \right\}\).

Question: In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{array}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{array}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each is given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{ - {\bf{19}}}\\{\bf{5}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{{\bf{1}}.{\bf{5}}}\\{ - {\bf{1}}.{\bf{3}}}\\{ - .{\bf{5}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{4}}}\\{\bf{0}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free