Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) and \({\mathop{\rm x}\nolimits} \ge 0\).

7. \(A = \left( {\begin{array}{*{20}{c}}1&3\\1&1\\4&1\end{array}} \right),{\rm{ }}{\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}{18}\\{10}\\{28}\end{array}} \right)\)

Short Answer

Expert verified

The minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}7\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}6\\4\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\6\end{array}} \right)} \right\}\).

Step by step solution

01

The three inequalities in \(A{\mathop{\rm x}\nolimits}  \le {\mathop{\rm b}\nolimits} \)

The three matrix inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) yield the following system of inequalities:

  1. \({x_1} + 3{x_2} \le 18\)
  2. \({x_1} + {x_2} \le 10\)
  3. \(4{x_1} + {x_2} \le 28\)
02

Determine the \({{\mathop{\rm x}\nolimits} _1}\)-intercept and \({{\mathop{\rm x}\nolimits} _2}\)-intercept of the three lines

The condition \({\mathop{\rm x}\nolimits} \ge 0\) places polytope \(P\) in the first quadrant of the plane. One vertex is \(\left( {0,0} \right)\).

The \({{\mathop{\rm x}\nolimits} _1}\)-intercepts\(\left( {{\mathop{\rm If}\nolimits} {{\mathop{\rm x}\nolimits} _2} = 0} \right)\) of the three lines are 18, 10, and 7, so \(\left( {7,0} \right)\) is a vertex. The \({{\mathop{\rm x}\nolimits} _2}\)-intercepts \(\left( {{\mathop{\rm If}\nolimits} {{\mathop{\rm x}\nolimits} _1} = 0} \right)\) of the three lines are 6, 10, and 28, then \(\left( {0,6} \right)\) is a vertex.

03

Determine the intersection point corresponds to inequalities

The intersection of (a) and (b) is at \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm a}\nolimits} {\mathop{\rm b}\nolimits} }} = \left( {6,4} \right)\). Testing \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm ab}\nolimits} }}\) in (c) gives \(4\left( 6 \right) + 4 = 28\), so \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm ab}\nolimits} }}\) is in \({\mathop{\rm P}\nolimits} \).

04

Determine the minimal representation of the polytope

The set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},..,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is aminimal representation of the polytope\(P\)when\(P = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) and for each \(i = 1,...,k\), \({{\mathop{\rm v}\nolimits} _1} \notin \left\{ {{{\mathop{\rm v}\nolimits} _j}:j \ne i} \right\}\).

The four vertices of the polytope are \(\left( {0,0} \right),\left( {7,0} \right)\left( {6,4} \right),\,\,{\mathop{\rm and}\nolimits} \,\,\left( {0,6} \right)\).

Thus, the minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}7\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}6\\4\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\6\end{array}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Let \({\bf{p}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\), \({\bf{n}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{5}}\\{ - {\bf{1}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{1}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{0}}\\{\bf{1}}\\{\bf{3}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{4}}\\{\bf{0}}\\{\bf{4}}\end{array}} \right)\), and let H be the hyperplane in\({\mathbb{R}^{\bf{4}}}\) with normal n and passing through p. Which of the points \({{\bf{v}}_{\bf{1}}}\), \({{\bf{v}}_{\bf{2}}}\), and \({{\bf{v}}_{\bf{3}}}\) are on the same side of H as the origin, and which are not?

Questions: Let \({F_{\bf{1}}}\) and \({F_{\bf{2}}}\) be 4-dimensional flats in \({\mathbb{R}^{\bf{6}}}\), and suppose that \({F_{\bf{1}}} \cap {F_{\bf{2}}} \ne \phi \). What are the possible dimension of \({F_{\bf{1}}} \cap {F_{\bf{2}}}\)?

Question: In Exercises 21 and 22, mark each statement True or False. Justify each answer.

22 a. If \(d\)is a real number and \(f\) is a nonzero linear functional defined on \({\mathbb{R}^n}\) , then \(f:d\)is a hyperplane in \({\mathbb{R}^n}\) .

b. Given any vector n and any real number \(d\), the set \(\left\{ {x:n \cdot x = d} \right\}\) is a hyperplane.

c. If \(A\) and \(B\) are nonempty disjoint sets such that \(A\) is compact and \(B\) is closed, then there exists a hyperplane that strictly separates \(A\) and \(B\).

d. If there exists a hyperplane \(H\) such that \(H\) does not strictly separate two sets \(A\) and \(B\), then \(\left( {{\rm{conv}}\,A} \right) \cap \left( {{\rm{conv}}\,B} \right) \ne \emptyset \) and \(B\).

Question: In Exercise 4, determine whether each set is open or closed or neither open nor closed.

4. a. \(\left\{ {\left( {x,y} \right):{x^{\bf{2}}} + {y^{\bf{2}}} = {\bf{1}}} \right\}\)

b. \(\left\{ {\left( {x,y} \right):{x^{\bf{2}}} + {y^{\bf{2}}} > {\bf{1}}} \right\}\)

c. \(\left\{ {\left( {x,y} \right):{x^{\bf{2}}} + {y^{\bf{2}}} \le {\bf{1}}\,\,\,and\,\,y > {\bf{0}}} \right\}\)

d. \(\left\{ {\left( {x,y} \right):y \ge {x^{\bf{2}}}} \right\}\)

e. \(\left\{ {\left( {x,y} \right):y < {x^{\bf{2}}}} \right\}\)

Question: Let \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{\bf{0}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{1}}}\\{\bf{0}}\\{\bf{4}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{3}}}\\{\bf{5}}\\{\bf{3}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{9}}}\\{{\bf{10}}}\\{\bf{9}}\\{ - {\bf{13}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{2}}\\{\bf{8}}\\{\bf{5}}\end{array}} \right)\)

and \(S = \left\{ {{{\bf{v}}_1},\,\,{{\bf{v}}_2},\,{{\bf{v}}_3}} \right\}\). It can be shown that S is linearly independent.

a. Is \({{\bf{p}}_{\bf{1}}}\) is span S? Is \({{\bf{p}}_{\bf{1}}}\) is \({\bf{aff}}\,S\)?

b. Is \({{\bf{p}}_{\bf{2}}}\) is span S? Is \({{\bf{p}}_{\bf{2}}}\) is \({\bf{aff}}\,S\)?

c. Is \({{\bf{p}}_{\bf{3}}}\) is span S? Is \({{\bf{p}}_{\bf{3}}}\) is \({\bf{aff}}\,S\)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free