Question: 13. Suppose \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a basis for \({\mathbb{R}^3}\). Show that Span \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\) is a plane in \({\mathbb{R}^3}\). (Hint: What can you say about \({\rm{u}}\) and \({\rm{v}}\)when Span \(\left\{ {{\rm{u,v}}} \right\}\) is a plane?)

Short Answer

Expert verified

It is shown that the Span of \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is in the plane \({\mathbb{R}^3}\).

Step by step solution

01

Describe the given statement

It is given that \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a basis for \({\mathbb{R}^3}\)and it is to be shown that Span of \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is in the plane \({\mathbb{R}^3}\). This is possible only if the set of vectors \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is linearly independent.

02

 Make a linear combination of the given set of vectors

A possible linear combination of a set of vectors \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is \({c_1}\left( {{{\bf{v}}_2} - {{\bf{v}}_1}} \right) + {c_2}\left( {{{\bf{v}}_3} - {{\bf{v}}_1}} \right)\), where \({c_2},{c_3}\) satisfies \({c_1}\left( {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}}} \right) + {c_2}\left( {{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right) = 0\). If \({c_1}\left( {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}}} \right) + {c_2}\left( {{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right) = 0\) is linearly independent, then \({c_1}\left( {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}}} \right) + {c_2}\left( {{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right) = 0\) must be equal to 0, which is possible only if \({c_1} = {c_2} = 0\).

03

 Use property of a linear independent set

According to the property of linear independent set, if \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a set of linearly independent vectors, then all the coefficients of its linear combination are 0. So, \({c_1} = {c_2} = 0\) is true for all \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) in \({\mathbb{R}^3}\).

04

 Draw a conclusion

As the set of vectors \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is linearly independent, so the Span of \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is in the plane \({\mathbb{R}^3}\).

Hence, it is proved that the Span of \(\left\{ {{{\rm{v}}_{\rm{2}}} - {{\rm{v}}_{\rm{1}}},{{\rm{v}}_{\rm{3}}} - {{\rm{v}}_{\rm{1}}}} \right\}\)is in the plane \({\mathbb{R}^3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the plane in \({\mathbb{R}^{\bf{3}}}\) spanned by the rows of \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{3}}&{\bf{5}}\\{\bf{0}}&{\bf{2}}&{\bf{4}}\end{array}} \right)\). That is, \(H = {\bf{Row}}\,B\). (Hint: How is H is related to Nul B?see section 6.1.)

Let\(\left\{ {{p_1},{p_2},{p_3}} \right\}\)be an affinely dependent set of points in\({\mathbb{R}^{\bf{n}}}\)and let\(f:{\mathbb{R}^{\bf{n}}} \to {\mathbb{R}^{\bf{m}}}\)be a linear transformation. Show that\(\left\{ {f\left( {{{\bf{p}}_1}} \right),f\left( {{{\bf{p}}_2}} \right),f\left( {{{\bf{p}}_3}} \right)} \right\}\)is affinely dependent in\({\mathbb{R}^{\bf{m}}}\).

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the column space of the matrix \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{5}}&{\bf{2}}\\{ - {\bf{4}}}&{ - {\bf{4}}}\end{array}} \right)\). That is, \(H = {\bf{Col}}\,B\).(Hint: How is \({\bf{Col}}\,B\)related to Nul \({B^T}\)? See section 6.1)

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left) {f:d} \right)\) the hyperplane H described in the exercise.

Let H be the plane in \({\mathbb{R}^{\bf{3}}}\) spanned by the rows of \(B = \left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{4}}&{ - {\bf{5}}}\\{\bf{0}}&{ - {\bf{2}}}&{\bf{8}}\end{array}} \right)\). That is, \(H = {\bf{Row}}\,B\).

In Exercises 21–24, a, b, and c are noncollinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \)and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

24. Take q on the line segment from b to c and consider the line through q and a, which may be written as\(p = \left( {1 - x} \right)q + xa\)for all real x. Show that, for each x,\(det\left[ {\begin{array}{*{20}{c}}{\widetilde p}&{\widetilde b}&{\widetilde c}\end{array}} \right] = x \cdot det\left[ {\begin{array}{*{20}{c}}{\widetilde a}&{\widetilde b}&{\widetilde c}\end{array}} \right]\). From this and earlier work, conclude that the parameter x is the first barycentric coordinate of p. However, by construction, the parameter x also determines the relative distance between p and q along the segment from q to a. (When x = 1, p = a.) When this fact is applied to Example 5, it shows that the colors at vertex a and the point q are smoothly interpolated as p moves along the line between a and q.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free