Question: 19. Let \(S\) be an affine subset of \({\mathbb{R}^n}\) , suppose \(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\)is a linear transformation, and let \(f\left( S \right)\) denote the set of images \(\left\{ {f\left( {\rm{x}} \right):{\rm{x}} \in S} \right\}\). Prove that \(f\left( S \right)\)is an affine subset of \({\mathbb{R}^m}\).

Short Answer

Expert verified

It is shown that \(f\left( S \right)\) is an affine subset of \({\mathbb{R}^m}\).

Step by step solution

01

Assume some vectors for a basis S, set f(s)

It is given that \(\left\{ {f\left( {\rm{x}} \right):{\rm{x}} \in S} \right\}\). If \({\bf{p,q}} \in f\left( S \right)\), \({\bf{r,s}} \in S\), \(f\left( {\bf{r}} \right) = {\bf{p}}\) and \(f\left( {\bf{s}} \right) = {\bf{q}}\). Suppose \(t\) be any vector for the subset \(\mathbb{R}\) such that \(t \in \mathbb{R}\).

02

Apply the linear property

Let z is in\(\mathbb{R}\)and since\(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\)is a linear transformation Then, the linearity property \(z = \left( {1 - t} \right){\rm{p}} + t{\rm{q}}\) must be in \(f\left( s \right)\).

03

Plugin \(f\left( {\rm{r}} \right) = {\rm{p}}\) and \(f\left( {\rm{s}} \right) = {\rm{q}}\) into \({\bf{z}} = \left( {1 - t} \right){\rm{p}} + t{\rm{q}}\)

Writez as shown below:

\(\begin{array}{c}z = \left( {1 - t} \right){\rm{p}} + t{\rm{q}}\\ = \left( {1 - t} \right)f\left( {\rm{r}} \right) + tf\left( {\rm{s}} \right)\\ = f\left( {\left( {1 - t} \right){\rm{r}} + t{\rm{s}}} \right)\end{array}\)

04

Draw a conclusion

As \(S\) is an affine subset of \({\mathbb{R}^n}\) such that \(\left\{ {f\left( x \right):x \in S} \right\}\),then for \(f\left( {\left( {1 - t} \right)r + ts} \right)\), \(\left( {1 - t} \right)r + ts \in S\).

This implies that \({\bf{z}} \in S\) and \(f\left( S \right)\) is also considered as an affine subset of \({\mathbb{R}^m}\) as z is in \({\mathbb{R}^n}\) and \(f:{\mathbb{R}^n} \to {\mathbb{R}^m}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercise 3, determine whether each set is open or closed or neither open nor closed.

3. a. \(\left\{ {\left( {x,y} \right):y > {\bf{0}}} \right\}\)

b. \(\left\{ {\left( {x,y} \right):x = {\bf{2}}\,\,\,and\,\,{\bf{1}} \le y \le {\bf{3}}} \right\}\)

c. \(\left\{ {\left( {x,y} \right):x = {\bf{2}}\,\,\,and\,\,{\bf{1}} < y < {\bf{3}}} \right\}\)

d. \(\left\{ {\left( {x,y} \right):xy = {\bf{1}}\,\,\,and\,\,x > {\bf{0}}} \right\}\)

e. \(\left\{ {\left( {x,y} \right):xy \ge {\bf{1}}\,\,\,and\,\,x > {\bf{0}}} \right\}\)

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

9.

a. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1} - {{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _2},...,{{\mathop{\rm v}\nolimits} _p} - {{\mathop{\rm v}\nolimits} _2}} \right\}\) is linearly dependent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent. (Read this carefully.)

b. If \({{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}\) are in \({\mathbb{R}^n}\) and if the set of homogeneous forms \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is affinely dependent.

c. A finite set of points \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _k}} \right\}\) is affinely dependent if there exist real numbers \({c_1},...,{c_k}\) , not all zero, such that \({c_1} + ... + {c_k} = 1\) and \({c_1}{{\mathop{\rm v}\nolimits} _1} + ... + {c_k}{{\mathop{\rm v}\nolimits} _k} = 0\).

d. If \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely independent set in \({\mathbb{R}^n}\) and if p in \({\mathbb{R}^n}\) has a negative barycentric coordinate determined by S, then p is not in \({\mathop{\rm aff}\nolimits} S\).

e.

If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},a,\) and \(b\) are in \({\mathbb{R}^3}\) and if ray \({\mathop{\rm a}\nolimits} + t{\mathop{\rm b}\nolimits} \) for \(t \ge 0\) intersects the triangle with vertices \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},\) and \({{\mathop{\rm v}\nolimits} _3}\) then the barycentric coordinates of the intersection points are all nonnegative.

Question: In Exercises 11 and 12, mark each statement True or False. Justify each answer.

11.a. The cubic Bezier curve is based on four control points.

b. Given a quadratic Bezier curve \({\mathop{\rm x}\nolimits} \left( t \right)\) with control points \({{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},\) and \({{\mathop{\rm p}\nolimits} _2}\), the directed line segment \({{\mathop{\rm p}\nolimits} _1} - {{\mathop{\rm p}\nolimits} _0}\) (from \({{\mathop{\rm p}\nolimits} _0}\) to \({{\mathop{\rm p}\nolimits} _1}\)) is the tangent vector to the curve at \({{\mathop{\rm p}\nolimits} _0}\).

c. When two quadratic Bezier curves with control points \(\left\{ {{{\mathop{\rm p}\nolimits} _0},{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2}} \right\}\) and \(\left\{ {{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3},{{\mathop{\rm p}\nolimits} _4}} \right\}\) are joined at \({{\mathop{\rm p}\nolimits} _2}\), the combined Bezier curve will have \({C^1}\) continuity at \({{\mathop{\rm p}\nolimits} _2}\)if\({{\mathop{\rm p}\nolimits} _2}\) is the midpoint of the line segment between \({{\mathop{\rm p}\nolimits} _1}\) and \({{\mathop{\rm p}\nolimits} _3}\).

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

3.\(\left( {\begin{aligned}{{}}1\\2\\{ - 1}\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 2}\\{ - 4}\\8\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\{ - 1}\\{11}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{15}\\{ - 9}\end{aligned}} \right)\)

In Exercises 21-26, prove the given statement about subsets A and B of \({\mathbb{R}^n}\), or provide the required example in \({\mathbb{R}^2}\). A proof for an exercise may use results from earlier exercises (as well as theorems already available in the text).

25. \({\mathop{\rm aff}\nolimits} \left( {A \cap B} \right) \subset \left( {{\mathop{\rm aff}\nolimits} A \cap {\mathop{\rm aff}\nolimits} B} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free