Question: Let \({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{\bf{0}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{1}}}\\{\bf{0}}\\{\bf{4}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{3}}}\\{\bf{5}}\\{\bf{3}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{9}}}\\{{\bf{10}}}\\{\bf{9}}\\{ - {\bf{13}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{2}}\\{\bf{8}}\\{\bf{5}}\end{array}} \right)\)

and \(S = \left\{ {{{\bf{v}}_1},\,\,{{\bf{v}}_2},\,{{\bf{v}}_3}} \right\}\). It can be shown that S is linearly independent.

a. Is \({{\bf{p}}_{\bf{1}}}\) is span S? Is \({{\bf{p}}_{\bf{1}}}\) is \({\bf{aff}}\,S\)?

b. Is \({{\bf{p}}_{\bf{2}}}\) is span S? Is \({{\bf{p}}_{\bf{2}}}\) is \({\bf{aff}}\,S\)?

c. Is \({{\bf{p}}_{\bf{3}}}\) is span S? Is \({{\bf{p}}_{\bf{3}}}\) is \({\bf{aff}}\,S\)?

Short Answer

Expert verified

a. \({{\bf{p}}_1} \in {\rm{span}}\,S\), but \({{\bf{p}}_1} \notin \,{\rm{aff}}\,\,S\)

b. \({{\bf{p}}_2} \in {\rm{span}}\,S\), but \({{\bf{p}}_2} \in {\rm{aff}}\,\,S\)

c. \({{\bf{p}}_3} \notin {\rm{span}}\,S\), but \({{\bf{p}}_3} \notin {\rm{aff}}\,\,S\)

Step by step solution

01

Find the augmented matrix

The augmented matrix can be expressed as,

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}&{{{\bf{p}}_1}}&{{{\bf{p}}_2}}&{{{\bf{p}}_3}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&2&{ - 1}&5&{ - 9}&4\\0&{ - 1}&2&{ - 3}&{10}&2\\3&0&1&5&9&8\\0&4&1&3&{ - 13}&5\end{array}} \right)\end{array}\)

02

Write the row reduced form of the augmented matrix

The augmented matrix can be written as,

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}1&2&{ - 1}&5&{ - 9}&4\\0&{ - 1}&2&{ - 3}&{10}&2\\0&{ - 6}&4&{ - 10}&{36}&{ - 4}\\0&4&1&3&{ - 13}&5\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_3} \to {R_3} - 3{R_1}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&2&{ - 1}&5&{ - 9}&4\\0&{ - 1}&2&{ - 3}&{10}&2\\0&0&{ - 8}&8&{ - 24}&{ - 16}\\0&0&9&{ - 9}&{27}&{13}\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}{R_3} \to {R_3} - 6{R_2}\\{R_4} \to {R_4} + 4{R_2}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&2&{ - 1}&5&{ - 9}&4\\0&{ - 1}&2&{ - 3}&{10}&2\\0&0&1&{ - 1}&3&2\\0&0&9&{ - 9}&{27}&{13}\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_3} \to - \frac{1}{8}{R_3}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&2&{ - 1}&5&{ - 9}&4\\0&1&{ - 2}&3&{ - 10}&{ - 2}\\0&0&1&{ - 1}&3&2\\0&0&0&0&0&{ - 5}\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}{R_4} \to {R_4} - 9{R_3}\\{R_2} \to - {R_2}\end{array} \right\}\end{array}\)

Row reduce further,

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}1&2&{ - 1}&5&{ - 9}&4\\0&1&{ - 2}&3&{ - 10}&{ - 2}\\0&0&1&{ - 1}&3&0\\0&0&0&0&0&1\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}{R_3} \to - \frac{1}{5}{R_3}\\{R_3} \to {R_3} - 2{R_4}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&2&{ - 1}&5&{ - 9}&4\\0&1&0&1&{ - 4}&{ - 2}\\0&0&1&{ - 1}&3&0\\0&0&0&0&0&1\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_2} \to {R_2} + 2{R_3}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&2&0&4&{ - 6}&4\\0&1&0&1&{ - 4}&0\\0&0&1&{ - 1}&3&0\\0&0&0&0&0&1\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}{R_2} \to {R_1} + 2{R_4}\\{R_1} \to {R_1} + {R_3}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&0&2&2&0\\0&1&0&1&{ - 4}&0\\0&0&1&{ - 1}&3&0\\0&0&0&0&0&1\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}\left\{ {{R_1} \to {R_1} - 4{R_4}} \right\}\\{R_1} \to {R_1} - 2{R_2}\end{array} \right\}\end{array}\)

There are no zero rows in the augmented matrix. Hence the set is linearly independent.

03

Check for the affine combination of \({{\bf{p}}_{\bf{1}}}\)

Use the augmented matrix, \({{\bf{p}}_1}\) which can be expressed as shown below:

\({{\bf{p}}_1} = 2\left( {{{\bf{b}}_1}} \right) + 1\left( {{{\bf{b}}_2}} \right) - 1\left( {{{\bf{b}}_3}} \right)\)

The sum of coefficients is \(2 + 1 - 1 = 2 \ne 1\).

So, \({{\bf{p}}_1}\) is not an affine combination of point in S.

04

Check for the affine combination of \({{\bf{p}}_{\bf{2}}}\)

Use the augmented matrix, \({{\bf{p}}_2}\) which can be expressed as shown below:

\({{\bf{p}}_2} = 2\left( {{{\bf{b}}_1}} \right) - 4\left( {{{\bf{b}}_2}} \right) + 3\left( {{{\bf{b}}_3}} \right)\)

The sum of coefficients is \(2 - 4 + 3 = 1\).

So, \({{\bf{p}}_2}\) is an affine combination of point in S.

\({{\bf{p}}_2} = 2\left( {{{\bf{b}}_1}} \right) - 4\left( {{{\bf{b}}_2}} \right) + 3\left( {{{\bf{b}}_3}} \right)\)

05

Check for the affine combination of \({{\bf{p}}_{\bf{3}}}\)

From the augmented matrix, it can be observed that, \({p_3}\) can not be written as the linear combination of point of S.

\({p_3}\)is not an affine combination of points in S.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 14. Show that if \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is a basis for \({\mathbb{R}^3}\), then aff \(\left\{ {{{\rm{v}}_{\rm{1}}}{\rm{,}}{{\rm{v}}_{\rm{2}}}{\rm{,}}{{\rm{v}}_{\rm{3}}}} \right\}\) is the plane through \({{\rm{v}}_{\rm{1}}}{\rm{, }}{{\rm{v}}_{\rm{2}}}\) and \({{\rm{v}}_{\rm{3}}}\).

Question: Repeat Exercise 7 when

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{ - {\bf{2}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{6}}\\{ - {\bf{5}}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{0}}\\{{\bf{12}}}\\{ - {\bf{6}}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{1}}}\\{{\bf{15}}}\\{ - {\bf{7}}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{5}}}\\{\bf{3}}\\{ - {\bf{8}}}\\{\bf{6}}\end{array}} \right)\), and \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{6}}\\{ - {\bf{6}}}\\{ - {\bf{8}}}\end{array}} \right)\)

Question: In Exercises 5 and 6, let \({{\bf{b}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{1}}\end{array}} \right)\), \({{\bf{b}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{ - {\bf{2}}}\end{array}} \right)\), and \({{\bf{b}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\\{\bf{1}}\end{array}} \right)\) and \(S = \left\{ {{{\bf{b}}_{\bf{1}}},\,{{\bf{b}}_{\bf{2}}},\,{{\bf{b}}_{\bf{3}}}} \right\}\). Note that S is an orthogonal basis of \({\mathbb{R}^{\bf{3}}}\). Write each is given points as an affine combination of the points in the set S, if possible. (Hint: Use Theorem 5 in section 6.2 instead of row reduction to find the weights.)

a. \({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{0}}\\{ - {\bf{19}}}\\{\bf{5}}\end{array}} \right)\) b. \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{{\bf{1}}.{\bf{5}}}\\{ - {\bf{1}}.{\bf{3}}}\\{ - .{\bf{5}}}\end{array}} \right)\) c. \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{4}}}\\{\bf{0}}\end{array}} \right)\)

Question 4: Repeat Exercise 2 where \(m\) is the minimum value of \(f\) on \(S\) instead of the maximum value.

The parametric vector form of a B-spline curve was defined in the Practice Problems as

\({\bf{x}}\left( t \right) = \frac{1}{6}\left[ \begin{array}{l}{\left( {1 - t} \right)^3}{{\bf{p}}_o} + \left( {3t{{\left( {1 - t} \right)}^2} - 3t + 4} \right){{\bf{p}}_1}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left( {3{t^2}\left( {1 - t} \right) + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}\end{array} \right]\;\), for \(0 \le t \le 1\) where \({{\bf{p}}_o}\) , \({{\bf{p}}_1}\), \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\) are the control points.

a. Show that for \(0 \le t \le 1\), \({\bf{x}}\left( t \right)\) is in the convex hull of the control points.

b. Suppose that a B-spline curve \({\bf{x}}\left( t \right)\)is translated to \({\bf{x}}\left( t \right) + {\bf{b}}\) (as in Exercise 1). Show that this new curve is again a B-spline.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free