Question: Repeat Exercise 7 when

\({{\bf{v}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\\{\bf{3}}\\{ - {\bf{2}}}\end{array}} \right)\), \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\\{\bf{6}}\\{ - {\bf{5}}}\end{array}} \right)\), and \({{\bf{v}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{0}}\\{{\bf{12}}}\\{ - {\bf{6}}}\end{array}} \right)\)

\({{\bf{p}}_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{1}}}\\{{\bf{15}}}\\{ - {\bf{7}}}\end{array}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{5}}}\\{\bf{3}}\\{ - {\bf{8}}}\\{\bf{6}}\end{array}} \right)\), and \({{\bf{p}}_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{6}}\\{ - {\bf{6}}}\\{ - {\bf{8}}}\end{array}} \right)\)

Short Answer

Expert verified

a. \({{\bf{p}}_1} \in {\rm{span}}\,S\), but \({{\bf{p}}_1} \notin \,{\rm{aff}}\,\,S\)

b. \({{\bf{p}}_2} \notin {\rm{span}}\,S\), but \({{\bf{p}}_2} \notin {\rm{aff}}\,\,S\)

c. \({{\bf{p}}_3} \in {\rm{span}}\,S\), but \({{\bf{p}}_3} \in {\rm{aff}}\,\,S\)

Step by step solution

01

Find the augmented matrix

Write the augmented matrix by using the points as shown below:

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}&{{{\bf{p}}_1}}&{{{\bf{p}}_2}}&{{{\bf{p}}_3}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&2&3&4&{ - 5}&4\\0&1&0&{ - 1}&3&2\\3&6&{12}&{15}&{ - 8}&8\\{ - 2}&{ - 5}&{ - 6}&{ - 7}&6&5\end{array}} \right)\end{array}\)

02

Write the row reduced form of the augmented matrix

The augmented matrix can be written as,

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}1&2&3&4&{ - 5}&4\\0&1&0&{ - 1}&3&6\\0&0&3&3&7&{ - 9}\\0&{ - 1}&0&1&{ - 4}&{ - 6}\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}{R_3} \to {R_3} - 3{R_1}\\{R_4} \to {R_4} + 2{R_1}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&3&6&{ - 11}&{ - 11}\\0&1&0&{ - 1}&3&6\\0&0&3&3&7&{ - 9}\\0&0&0&0&{ - 1}&0\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}{R_1} \to {R_1} - 2{R_2}\\{R_4} \to {R_4} + {R_2}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&0&3&{ - 18}&{ - 2}\\0&1&0&{ - 1}&0&6\\0&0&3&3&7&{ - 9}\\0&0&0&0&{ - 1}&0\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}{R_1} \to {R_1} - {R_3}\\{R_2} \to {R_2} + 3{R_4}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&0&3&0&{ - 2}\\0&1&0&{ - 1}&0&6\\0&0&3&3&7&{ - 9}\\0&0&0&0&{ - 1}&0\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_1} \to {R_1} - 18{R_4}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&0&3&0&{ - 2}\\0&1&0&{ - 1}&0&6\\0&0&1&1&{\frac{7}{3}}&{ - 3}\\0&0&0&0&{ - 1}&0\end{array}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {{R_3} \to \frac{1}{3}{R_3}} \right\}\end{array}\)

There are no zero rows in the augmented matrix. Hence the set is linearly independent.

03

Check for the affine combination of \({{\bf{p}}_{\bf{1}}}\)

Use the augmented matrix, \({{\bf{p}}_1}\) which can be expressed as shown below:

\({{\bf{p}}_1} = 3\left( {{{\bf{b}}_1}} \right) - 1\left( {{{\bf{b}}_2}} \right) + 1\left( {{{\bf{b}}_3}} \right)\)

The sum of coefficients is \(3 - 1 + 1 = 3 \ne 1\).

So, \({{\bf{p}}_1}\) is not an affine combination of point in S.

04

Check for the affine combination of \({{\bf{p}}_{\bf{2}}}\)

From the augmented matrix, it can be observed that, \({{\bf{p}}_2}\) can not be written as the linear combination of point of S.

\({{\bf{p}}_2}\)is not an affine combination of points in S.

05

Check for an affine combination of \({{\bf{p}}_{\bf{3}}}\)

Use the augmented matrix, \({{\bf{p}}_3}\) which can be expressed as shown below:

\({{\bf{p}}_3} = - 2\left( {{{\bf{b}}_1}} \right) + 6\left( {{{\bf{b}}_2}} \right) - 3\left( {{{\bf{b}}_3}} \right)\)

The sum of coefficients is \( - 2 + 6 - 3 = 1\).

So, \({{\bf{p}}_3}\) is an affine combination of point in S.

\({{\bf{p}}_3} = - 2\left( {{{\bf{b}}_1}} \right) + 6\left( {{{\bf{b}}_2}} \right) - 3\left( {{{\bf{b}}_3}} \right)\)

Hence, \({{\bf{p}}_3}\) is an affine combination of point in S.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: 11. In Exercises 11 and 12, mark each statement True or False. Justify each answer.

11. a. The set of all affine combinations of points in a set \(S\) is called the affine hull of \(S\).

b. If \(\left\{ {{{\rm{b}}_{\rm{1}}}{\rm{,}}.......{{\rm{b}}_{\rm{2}}}} \right\}\) is a linearly independent subset of \({\mathbb{R}^n}\) and if \({\bf{p}}\) is a linear combination of \({{\rm{b}}_{\rm{1}}}.......{{\rm{b}}_{\rm{k}}}\), then \({\rm{p}}\) is an affine combination of \({{\rm{b}}_{\rm{1}}}.......{{\rm{b}}_{\rm{k}}}\).

c. The affine hull of two distinct points is called a line.

d. A flat is a subspace.

e. A plane in \({\mathbb{R}^3}\) is a hyper plane.

The conditions for affine dependence are stronger than those for linear dependence, so an affinely dependent set is automatically linearly dependent. Also, a linearly independent set cannot be affinely dependent and therefore must be affinely independent. Construct two linearly dependent indexed sets\({S_{\bf{1}}}\)and\({S_{\bf{2}}}\)in\({\mathbb{R}^2}\)such that\({S_{\bf{1}}}\)is affinely dependent and\({S_{\bf{2}}}\)is affinely independent. In each case, the set should contain either one, two, or three nonzero points.

In Exercises 9 and 10, mark each statement True or False. Justify each answer.

10.a. If \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _p}} \right\}\) is an affinely dependent set in \({\mathbb{R}^n}\), then the set \(\left\{ {{{\overline {\mathop{\rm v}\nolimits} }_1},...,{{\overline {\mathop{\rm v}\nolimits} }_p}} \right\}\) in \({\mathbb{R}^{n + 1}}\) of homogeneous forms may be linearly independent.

b. If \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) and \({{\mathop{\rm v}\nolimits} _4}\) are in \({\mathbb{R}^3}\) and if the set \(\left\{ {{{\mathop{\rm v}\nolimits} _2} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _3} - {{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _4} - {{\mathop{\rm v}\nolimits} _1}} \right\}\) is linearly independent, then \(\left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}\) is affinely independent.

c. Given \(S = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}} \right\}\) in \({\mathbb{R}^n}\), each \({\bf{p}}\) in\({\mathop{\rm aff}\nolimits} S\) has a unique representation as an affine combination of \({{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _k}\).

d. When color information is specified at each vertex \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}\) of a triangle in \({\mathbb{R}^3}\), then the color may be interpolated at a point p in \({\mathop{\rm aff}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{{\mathop{\rm v}\nolimits} _4}} \right\}\) using the barycentric coordinates of p.

e. If T is a triangle in \({\mathbb{R}^2}\) and if a point p is on edge of the triangle, then the barycentric coordinates of p (for this triangle) are not all positive.

Question: 1. Let Lbe the line in \({\mathbb{R}^{\bf{2}}}\) through the points \(\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{4}}\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{1}}\end{array}} \right)\). Find a linear functional f and a real number d such that \(L = \left( {f:d} \right)\).

Question 2: Given points \({{\mathop{\rm p}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}0\\{ - 1}\end{array}} \right),{\rm{ }}{{\mathop{\rm p}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\1\end{array}} \right),\) and \({{\mathop{\rm p}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}1\\2\end{array}} \right)\) in \({\mathbb{R}^{\bf{2}}}\), let \(S = {\mathop{\rm conv}\nolimits} \left\{ {{{\mathop{\rm p}\nolimits} _1},{{\mathop{\rm p}\nolimits} _2},{{\mathop{\rm p}\nolimits} _3}} \right\}\). For each linear functional \(f\), find the maximum value \(m\) of \(f\), find the maximum value \(m\) of \(f\) on the set \(S\), and find all points x in \(S\) at which \(f\left( {\mathop{\rm x}\nolimits} \right) = m\).

a. \(f\left( {{x_1},{x_2}} \right) = {x_1} + {x_2}\)

b. \(f\left( {{x_1},{x_2}} \right) = {x_1} - {x_2}\)

c. \(f\left( {{x_1},{x_2}} \right) = - 2{x_1} + {x_2}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free