Exercises 7-10 use the terminology from section 8.2.

Repeat Exercise 7 for \(T = \left\{ {\left[ {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{0}}\end{array}} \right],\,\left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{5}}\end{array}} \right],\,\left[ {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{1}}\end{array}} \right]} \right\}\) and \({{\bf{p}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}{\bf{2}}\\{\bf{1}}\end{array}} \right]\), \({{\bf{p}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{1}}\end{array}} \right]\), \({{\bf{p}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\frac{{\bf{1}}}{{\bf{3}}}}\end{array}} \right]\), and \({{\bf{p}}_{\bf{4}}} = \left[ {\begin{array}{*{20}{c}}{\bf{1}}\\{\bf{0}}\end{array}} \right]\).

Short Answer

Expert verified

a. \(\left( {\frac{{12}}{{13}},\,\frac{3}{{13}}, - \frac{2}{{13}}} \right)\), \(\left( {\frac{8}{{13}},\frac{2}{{13}},\frac{3}{{13}}} \right)\), \(\left( {\frac{2}{3},0,\frac{1}{3}} \right)\), and \(\left( {\frac{9}{{13}}, - \frac{1}{{13}},\frac{5}{{13}}} \right)\).

b. \({{\bf{p}}_2}\) will be inside conv T,\({{\bf{p}}_3}\) is on edge and, \({{\bf{p}}_1}\) and \({{\bf{p}}_4}\)is outside conv T.

Step by step solution

01

Find the augmented matrix

Use the vectors of T and \({{\bf{p}}_1}\), \({{\bf{p}}_2}\), \({{\bf{p}}_3}\), and \({{\bf{p}}_4}\) the augmented matrixcan be expressed as shown below:

\(\left[ {\begin{array}{*{20}{c}}{\widetilde {{{\bf{v}}_1}}}&{\widetilde {{{\bf{v}}_2}}}&{\widetilde {{{\bf{v}}_3}}}&{\widetilde {{{\bf{p}}_1}}}&{\widetilde {{{\bf{p}}_2}}}&{\widetilde {{{\bf{p}}_3}}}&{\widetilde {{{\bf{p}}_4}}}\end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}}1&1&1&1&1&1&1\\2&0&{ - 1}&2&1&1&1\\0&5&1&1&1&{\frac{1}{3}}&0\end{array}} \right]\)

02

Write row reduced form of the augmented matrix

\[\begin{array}{c}M = \left[ {\begin{array}{*{20}{c}}1&1&1&1&1&1&1\\0&{ - 2}&{ - 3}&0&{ - 1}&{ - 1}&{ - 1}\\0&5&1&1&1&{\frac{1}{3}}&0\end{array}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_2} \to {R_2} - 2{R_1}} \right)\\ = \left[ {\begin{array}{*{20}{c}}1&1&1&1&1&1&1\\0&1&{\frac{3}{2}}&0&{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\0&5&1&1&1&{\frac{1}{3}}&0\end{array}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_2} \to - \frac{1}{2}{R_2}} \right)\end{array}\]

Row reduce further,

\[\begin{array}{c}M = \left[ {\begin{array}{*{20}{c}}1&1&1&1&1&1&1\\0&1&{\frac{3}{2}}&0&{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\0&0&{ - \frac{{13}}{2}}&1&{ - \frac{3}{2}}&{ - \frac{{13}}{6}}&{ - \frac{5}{2}}\end{array}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_3} \to {R_3} - 5{R_2}} \right)\\ = \left[ {\begin{array}{*{20}{c}}1&1&1&1&1&1&1\\0&1&{\frac{3}{2}}&0&{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\0&0&1&{ - \frac{2}{{13}}}&{\frac{3}{{13}}}&{\frac{1}{3}}&{\frac{5}{{13}}}\end{array}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_3} \to - \frac{2}{{13}}{R_3}} \right)\\ = \left[ {\begin{array}{*{20}{c}}1&1&0&{\frac{{15}}{{13}}}&{\frac{{10}}{{13}}}&{\frac{2}{3}}&{\frac{8}{{13}}}\\0&1&0&{\frac{3}{{13}}}&{\frac{2}{{13}}}&0&{ - \frac{1}{{13}}}\\0&0&1&{ - \frac{2}{{13}}}&{\frac{3}{{13}}}&{\frac{1}{3}}&{\frac{5}{{13}}}\end{array}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \begin{array}{l}{R_1} \to {R_1} - {R_3}\\{R_2} \to {R_2} - \frac{3}{2}{R_3}\end{array} \right)\\ = \left[ {\begin{array}{*{20}{c}}1&0&0&{\frac{{12}}{{13}}}&{\frac{8}{{13}}}&{\frac{2}{3}}&{\frac{9}{{13}}}\\0&1&0&{\frac{3}{{13}}}&{\frac{2}{{13}}}&0&{ - \frac{1}{{13}}}\\0&0&1&{ - \frac{2}{{13}}}&{\frac{3}{{13}}}&{\frac{1}{3}}&{\frac{5}{{13}}}\end{array}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to {R_1} - {R_2}} \right)\end{array}\]

03

Conclusions from the row-reduced matrix

In the row reduced matrix column 4, column 5, column 6, and column 7 represents the barycentric coordinates of \({{\bf{p}}_1}\), \({{\bf{p}}_2}\), \({{\bf{p}}_3}\), and \({{\bf{p}}_4}\) respectively.

So, for \({{\bf{p}}_1}\), \({{\bf{p}}_2}\), \({{\bf{p}}_3}\), and \({{\bf{p}}_4}\) the barycentric coordinate is\(\left( {\frac{{12}}{{13}},\,\frac{3}{{13}}, - \frac{2}{{13}}} \right)\), \(\left( {\frac{8}{{13}},\frac{2}{{13}},\frac{3}{{13}}} \right)\), \(\left( {\frac{2}{3},0,\frac{1}{3}} \right)\), and \(\left( {\frac{9}{{13}}, - \frac{1}{{13}},\frac{5}{{13}}} \right)\) respectively.

04

Find the solution for part (b)

As barycentric coordinateof \({{\bf{p}}_1}\) and \({{\bf{p}}_4}\) has one negative value, therefore \({{\bf{p}}_3}\) and \({{\bf{p}}_4}\) are outside conv T.

As all coordinates for \({{\bf{p}}_2}\) are positive, therefore, it will be inside conv T. For \({{\bf{p}}_3}\), its second coordinate is zero, therefore \({{\bf{p}}_3}\) is on the edge of conv T.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The parametric vector form of a B-spline curve was defined in the Practice Problems as

\({\bf{x}}\left( t \right) = \frac{1}{6}\left[ \begin{array}{l}{\left( {1 - t} \right)^3}{{\bf{p}}_o} + \left( {3t{{\left( {1 - t} \right)}^2} - 3t + 4} \right){{\bf{p}}_1}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left( {3{t^2}\left( {1 - t} \right) + 3t + 1} \right){{\bf{p}}_2} + {t^3}{{\bf{p}}_3}\end{array} \right]\;\), for \(0 \le t \le 1\) where \({{\bf{p}}_o}\) , \({{\bf{p}}_1}\), \({{\bf{p}}_2}\) , and \({{\bf{p}}_3}\) are the control points.

a. Show that for \(0 \le t \le 1\), \({\bf{x}}\left( t \right)\) is in the convex hull of the control points.

b. Suppose that a B-spline curve \({\bf{x}}\left( t \right)\)is translated to \({\bf{x}}\left( t \right) + {\bf{b}}\) (as in Exercise 1). Show that this new curve is again a B-spline.

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

5.\(\left( {\begin{aligned}{{}}1\\0\\{ - 2}\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\1\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}{ - 1}\\5\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\5\\{ - 3}\end{aligned}} \right)\)

Question: In Exercises 15-20, write a formula for a linear functional f and specify a number d, so that \(\left( {f:d} \right)\) the hyperplane H described in the exercise.

Let A be the \({\bf{1}} \times {\bf{5}}\) matrix \(\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{5}}&{ - {\bf{3}}}&{\bf{0}}&{\bf{6}}\end{array}} \right)\). Note that \({\bf{Nul}}\,\,A\) is in \({\mathbb{R}^{\bf{5}}}\). Let \(H = {\bf{Nul}}\,\,A\).

Find an example in \({\mathbb{R}^2}\) to show that equality need not hold in the statement of Exercise 23.

Question 3: Repeat Exercise 1 where \(m\) is the minimum value of f on \(S\) instead of the maximum value.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free