Question: In Exercises 5-8, find the minimal representation of the polytope defined by the inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) and \({\mathop{\rm x}\nolimits} \ge 0\).

8. \(A = \left( {\begin{array}{*{20}{c}}2&1\\1&1\\1&2\end{array}} \right),{\rm{ }}{\mathop{\rm b}\nolimits} = \left( {\begin{array}{*{20}{c}}8\\6\\7\end{array}} \right)\)

Short Answer

Expert verified

The minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\2\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\{3.5}\end{array}} \right)} \right\}\).

Step by step solution

01

The three inequalities in \(A{\mathop{\rm x}\nolimits}  \le {\mathop{\rm b}\nolimits} \)

The three matrix inequalities \(A{\mathop{\rm x}\nolimits} \le {\mathop{\rm b}\nolimits} \) yield the following system of inequalities:

  1. \(2{x_1} + {x_2} \le 8\)
  2. \({x_1} + {x_2} \le 6\)
  3. \({x_1} + 2{x_2} \le 7\)
02

Determine the \({{\mathop{\rm x}\nolimits} _1}\)-intercept and \({{\mathop{\rm x}\nolimits} _2}\)-intercept of the three lines

The condition \({\mathop{\rm x}\nolimits} \ge 0\) places polytope \(P\) in the first quadrant of the plane. One vertex is \(\left( {0,0} \right)\).

The \({{\mathop{\rm x}\nolimits} _1}\)-intercepts\(\left( {{\mathop{\rm If}\nolimits} {x_2} = 0} \right)\) of the three lines are 4, 6, and 7, so \(\left( {4,0} \right)\) is a vertex.

The \({{\mathop{\rm x}\nolimits} _2}\)-intercepts\(\left( {{\mathop{\rm If}\nolimits} {x_1} = 0} \right)\) of the three lines are 8, 6, and 3.5, then \(\left( {0,3.5} \right)\) is a vertex.

03

Determine the intersection point corresponds to inequalities

The intersection of (a) and (b) is at \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm a}\nolimits} {\mathop{\rm b}\nolimits} }} = \left( {2,4} \right)\). Testing \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm ab}\nolimits} }}\) in (c) gives \(2 + 2\left( 4 \right) = 10 > 7\), so \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm ab}\nolimits} }}\) is not in \({\mathop{\rm P}\nolimits} \). The intersection of (a) and (c) is at \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm a}\nolimits} {\mathop{\rm c}\nolimits} }} = \left( {3,2} \right)\). Testing \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm a}\nolimits} {\mathop{\rm c}\nolimits} }}\) in (b) gives \(3 + 2 = 5 < 6\). So, \({{\mathop{\rm P}\nolimits} _{{\mathop{\rm a}\nolimits} {\mathop{\rm c}\nolimits} }}\) is in \({\mathop{\rm P}\nolimits} \).

04

Determine the minimal representation of the polytope

The four vertices of the polytope are \(\left( {0,0} \right),\left( {4,0} \right)\left( {3,2} \right),\,\,{\mathop{\rm and}\nolimits} \,\,\left( {0,3.5} \right)\).

Thus, the minimal representation of the polytope \(P\) is \(\left\{ {\left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}4\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}3\\2\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\{3.5}\end{array}} \right)} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 21-26, prove the given statement about subsets A and B of \({\mathbb{R}^n}\), or provide the required example in \({\mathbb{R}^2}\). A proof for an exercise may use results from earlier exercises (as well as theorems already available in the text).

25. \({\mathop{\rm aff}\nolimits} \left( {A \cap B} \right) \subset \left( {{\mathop{\rm aff}\nolimits} A \cap {\mathop{\rm aff}\nolimits} B} \right)\)

Suppose \({\bf{y}}\) is orthogonal to \({\bf{u}}\) and \({\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to every \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\). (Hint: An arbitrary \({\bf{w}}\) in Span \(\left\{ {{\bf{u}},\,{\bf{v}}} \right\}\) has the form \({\bf{w}} = {c_1}{\bf{u}} + {c_2}{\bf{v}}\). Show that \({\bf{y}}\) is orthogonal to such a vector \({\bf{w}}\).)

In Exercises 1-6, determine if the set of points is affinely dependent. (See Practice Problem 2.) If so, construct an affine dependence relation for the points.

6.\(\left( {\begin{aligned}{{}}1\\3\\1\end{aligned}} \right),\left( {\begin{aligned}{{}}0\\{ - 1}\\{ - 2}\end{aligned}} \right),\left( {\begin{aligned}{{}}2\\5\\2\end{aligned}} \right),\left( {\begin{aligned}{{}}3\\5\\0\end{aligned}} \right)\)

In Exercises 21–24, a, b, and c are noncollinear points in\({\mathbb{R}^{\bf{2}}}\)and p is any other point in\({\mathbb{R}^{\bf{2}}}\). Let\(\Delta {\bf{abc}}\)denote the closed triangular region determined by a, b, and c, and let\(\Delta {\bf{pbc}}\)be the region determined by p, b, and c. For convenience, assume that a, b, and c are arranged so that\(\left[ {\begin{array}{*{20}{c}}{\overrightarrow {\bf{a}} }&{\overrightarrow {\bf{b}} }&{\overrightarrow {\bf{c}} }\end{array}} \right]\)is positive, where\(\overrightarrow {\bf{a}} \),\(\overrightarrow {\bf{b}} \)and\(\overrightarrow {\bf{c}} \)are the standard homogeneous forms for the points.

24. Take q on the line segment from b to c and consider the line through q and a, which may be written as\(p = \left( {1 - x} \right)q + xa\)for all real x. Show that, for each x,\(det\left[ {\begin{array}{*{20}{c}}{\widetilde p}&{\widetilde b}&{\widetilde c}\end{array}} \right] = x \cdot det\left[ {\begin{array}{*{20}{c}}{\widetilde a}&{\widetilde b}&{\widetilde c}\end{array}} \right]\). From this and earlier work, conclude that the parameter x is the first barycentric coordinate of p. However, by construction, the parameter x also determines the relative distance between p and q along the segment from q to a. (When x = 1, p = a.) When this fact is applied to Example 5, it shows that the colors at vertex a and the point q are smoothly interpolated as p moves along the line between a and q.

Let \(W = \left\{ {{{\bf{v}}_1},......,{{\bf{v}}_p}} \right\}\). Show that if \({\bf{x}}\) is orthogonal to each \({{\bf{v}}_j}\), for \(1 \le j \le p\), then \({\bf{x}}\) is orthogonal to every vector in \(W\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free