Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

19. \(A = \left( {\begin{array}{*{20}{c}}{.9}&1&0\\0&{ - .9}&0\\0&0&{.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}0\\1\\1\end{array}} \right)\).

Short Answer

Expert verified

The matrix pairs \(\left( {A,B} \right)\) are controllable.

Step by step solution

01

Define the rank of a matrix

Therank of matrix\(A\), denoted by rank\(A\), is the dimension of the column spaceof \(A\).

02

Determine the rank of the matrix

Calculate the rank of the matrix \(\left( {\begin{array}{*{20}{c}}B&{AB}&{{A^2}B}\end{array}} \right)\) to determine whether the matrix pair \(\left( {A,B} \right)\) is controllable.

Write the augmented matrix as shown below:

\(\left( {\begin{array}{*{20}{c}}B&{AB}&{{A^2}B}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0&1&0\\1&{ - .9}&{.81}\\1&{.5}&{.25}\end{array}} \right)\)

Perform an elementary row operation to produce the row-reduced echelon form of the matrix.

Interchange rows 1 and 2.

\( \sim \left( {\begin{array}{*{20}{c}}1&{ - .9}&{0.81}\\0&1&0\\1&{.5}&{.25}\end{array}} \right)\)

At row 3, subtract row 1 from row 3.

\( \sim \left( {\begin{array}{*{20}{c}}1&{ - .9}&{0.81}\\0&1&0\\0&{1.4}&{ - 0.56}\end{array}} \right)\)

At row 1, multiply row 2 by 0.9 and add it to row 1. At row 3, multiply row 2 by 1.4 and subtract it from row 3.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&{0.81}\\0&1&0\\0&0&{ - 0.56}\end{array}} \right)\)

At row 3, multiply row 3 by \( - \frac{1}{{0.56}}\).

\( \sim \left( {\begin{array}{*{20}{c}}1&0&{0.81}\\0&1&0\\0&0&1\end{array}} \right)\)

At row 1, multiply row 3 by 0.81 and subtract it from row 1.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\)

The matrix has three pivot columns, so the rank of the matrix is 3.

03

Determine whether the matrix pairs are controllable

The pair \(\left( {A,B} \right)\) is said to becontrollable if rank\(\left( {\begin{array}{*{20}{c}}B&{AB}&{{A^2}B}& \cdots &{{A^{n - 1}}B}\end{array}} \right) = n\).

The rank of the matrix is 3.

Thus, the matrix pairs \(\left( {A,B} \right)\) are controllable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(M) Let \(H = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2}} \right\}\) and \(K = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\), where

\({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}5\\3\\8\end{array}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}1\\3\\4\end{array}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}2\\{ - 1}\\5\end{array}} \right),{{\mathop{\rm v}\nolimits} _4} = \left( {\begin{array}{*{20}{c}}0\\{ - 12}\\{ - 28}\end{array}} \right)\)

Then \(H\) and \(K\) are subspaces of \({\mathbb{R}^3}\). In fact, \(H\) and \(K\) are planes in \({\mathbb{R}^3}\) through the origin, and they intersect in a line through 0. Find a nonzero vector w that generates that line. (Hint: w can be written as \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2}\) and also as \({c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\). To build w, solve the equation \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2} = {c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\) for the unknown \({c_j}'{\mathop{\rm s}\nolimits} \).)

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

  1. Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} A\). (Hint: Explain why every vector in the column space of \(AB\) is in the column space of \(A\).
  2. Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} B\). (Hint: Use part (a) to study rank\({\left( {AB} \right)^T}\).)

If A is a \({\bf{4}} \times {\bf{3}}\) matrix, what is the largest possible dimension of the row space of A? If Ais a \({\bf{3}} \times {\bf{4}}\) matrix, what is the largest possible dimension of the row space of A? Explain.

Prove theorem 3 as follows: Given an \(m \times n\) matrix A, an element in \({\mathop{\rm Col}\nolimits} A\) has the form \(Ax\) for some x in \({\mathbb{R}^n}\). Let \(Ax\) and \(A{\mathop{\rm w}\nolimits} \) represent any two vectors in \({\mathop{\rm Col}\nolimits} A\).

  1. Explain why the zero vector is in \({\mathop{\rm Col}\nolimits} A\).
  2. Show that the vector \(A{\mathop{\rm x}\nolimits} + A{\mathop{\rm w}\nolimits} \) is in \({\mathop{\rm Col}\nolimits} A\).
  3. Given a scalar \(c\), show that \(c\left( {A{\mathop{\rm x}\nolimits} } \right)\) is in \({\mathop{\rm Col}\nolimits} A\).

Let be a linear transformation from a vector space \(V\) \(T:V \to W\)in to vector space \(W\). Prove that the range of T is a subspace of . (Hint: Typical elements of the range have the form \(T\left( {\mathop{\rm x}\nolimits} \right)\) and \(T\left( {\mathop{\rm w}\nolimits} \right)\) for some \({\mathop{\rm x}\nolimits} ,\,{\mathop{\rm w}\nolimits} \)in \(V\).)\(W\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free