In \({{\rm{P}}^2}\), find the change-of-coordinates matrix from the basis \(B = \left\{ {1 - 2t + {t^2},\,3 - 5t + 4{t^2},\,2t + 3{t^2}} \right\}\) to the standard basis \(C = \left\{ {1,t,{t^2}} \right\}\)Then find the \(B\)-coordinate for\(\left\{ {1 - 2t} \right\}\).

Short Answer

Expert verified

\(\left( {\begin{array}{*{20}{c}}1&0&0&{\,\,\,\,\,\,5}\\0&1&0&{\,\,\, - 2}\\0&0&0&{\,\,\,\,\,\,1}\end{array}} \right)\), \({\left( x \right)_B} = \left( \begin{array}{l}\,\,\,5\\ - 2\\\,\,\,1\end{array} \right)\)

Step by step solution

01

Write the \(C\)- coordinate vector of \({b_1}\), \({b_2}\), \({b_3}\) and then write \(\mathop P\limits_{C \to B} \) matrix

The \(C\)-coordinates vectors of \({b_1}\),\({b_2}\),\({b_3}\) are\({\left( {{b_1}} \right)_c} = \left( \begin{array}{l}\,\,\,1\,\\ - 2\\\,\,\,1\end{array} \right)\), \({\left( {{b_2}} \right)_c} = \left( \begin{array}{l}\,\,\,3\\ - 5\\\,\,\,4\end{array} \right)\), \({\left( {{b_3}} \right)_c} = \left( \begin{array}{l}\,\,\,0\,\\\,\,\,2\\\,\,\,3\end{array} \right)\). Thus, the \(\mathop P\limits_{C \to B} \) matrix can be written as \(\mathop P\limits_{C \to B} = \left( {\begin{array}{*{20}{c}}1&3&0\\{ - 2}&{ - 5}&2\\1&4&3\end{array}} \right)\).

02

Use the result \({\left( x \right)_C} = P{\left( x \right)_B}\)

If \(x\)is the vector \(\left\{ { - 1 + 2t} \right\}\), then according to the result \({\left( x \right)_c} = \mathop P\limits_{C \to B} {\left( x \right)_B}\), you can write

\(\mathop P\limits_{C \to B} {\left( x \right)_B} = \left( \begin{array}{l} - 1\\\,\,\,2\\\,\,\,0\end{array} \right)\).

03

Substitute the matrix for\(\mathop P\limits_{C \to B} \) and apply row reduction on the augmented matrix

\(\begin{array}{l}\left( {\begin{array}{*{20}{c}}1&3&0&{ - 1}\\{ - 2}&{ - 5}&2&{\,\,\,2}\\1&4&3&{\,\,0}\end{array}} \right) \sim \left( {\begin{array}{*{20}{c}}1&0&0&{\,\,\,\,\,\,5}\\0&1&0&{\,\,\, - 2}\\0&0&0&{\,\,\,\,\,\,1}\end{array}} \right)\\ \sim \end{array}\)

04

Compare the resulting matrix with \(P{\left( x \right)_B}\) and write the column matrix\({\left( x \right)_B}\)

\({\left( x \right)_B} = \left( \begin{array}{l}\,\,\,5\\ - 2\\\,\,\,1\end{array} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(M) Determine whether w is in the column space of \(A\), the null space of \(A\), or both, where

\({\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}1\\2\\1\\0\end{array}} \right),A = \left( {\begin{array}{*{20}{c}}{ - 8}&5&{ - 2}&0\\{ - 5}&2&1&{ - 2}\\{10}&{ - 8}&6&{ - 3}\\3&{ - 2}&1&0\end{array}} \right)\)

In Exercise 7, find the coordinate vector \({\left( x \right)_{\rm B}}\) of x relative to the given basis \({\rm B} = \left\{ {{b_{\bf{1}}},...,{b_n}} \right\}\).

7. \({b_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{1}}}\\{ - {\bf{3}}}\end{array}} \right),{b_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{3}}}\\{\bf{4}}\\{\bf{9}}\end{array}} \right),{b_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{2}}}\\{\bf{4}}\end{array}} \right),x = \left( {\begin{array}{*{20}{c}}{\bf{8}}\\{ - {\bf{9}}}\\{\bf{6}}\end{array}} \right)\)

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

19. \(A = \left( {\begin{array}{*{20}{c}}{.9}&1&0\\0&{ - .9}&0\\0&0&{.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}0\\1\\1\end{array}} \right)\).

Let \({M_{2 \times 2}}\) be the vector space of all \(2 \times 2\) matrices, and define \(T:{M_{2 \times 2}} \to {M_{2 \times 2}}\) by \(T\left( A \right) = A + {A^T}\), where \(A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\).

  1. Show that \(T\)is a linear transformation.
  2. Let \(B\) be any element of \({M_{2 \times 2}}\) such that \({B^T} = B\). Find an \(A\) in \({M_{2 \times 2}}\) such that \(T\left( A \right) = B\).
  3. Show that the range of \(T\) is the set of \(B\) in \({M_{2 \times 2}}\) with the property that \({B^T} = B\).
  4. Describe the kernel of \(T\).

Let H be an n-dimensional subspace of an n-dimensional vector space V. Explain why \(H = V\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free