In \({{\rm{P}}_2}\), find the change-of-coordinates matrix from the basis \(B = \left\{ {1 - 3t,\,2 + t - 5{t^2},\,1 + 2t} \right\}\) to the standard basis. Then write \({t^2}\) as a linear combination of \(B\).

Short Answer

Expert verified

\(\left( {\begin{array}{*{20}{c}}1&0&0&3\\0&1&0&{ - 2}\\0&0&0&1\end{array}} \right)\), \({t^2} = 3\left( {1 - 3{t^2}} \right) - 2\left( {2 + t - 5{t^2}} \right) + \left( {1 + 2t} \right)\)

Step by step solution

01

Write the \(C\)-coordinate vector of \({b_1}\), \({b_2}\), \({b_3}\) and then write  the \(\mathop P\limits_{C \to B} \) matrix

The \(C\)-coordinate vectors of \({b_1}\),\({b_2}\),\({b_3}\) are\({\left( {{b_1}} \right)_c} = \left( \begin{array}{l}\,\,\,\,\,\,1\,\\\,\,\,\,\,\,0\\\,\,\, - 3\end{array} \right)\), \({\left( {{b_2}} \right)_c} = \left( \begin{array}{l}\,\,\,2\\\,\,\,1\\ - 5\end{array} \right)\), \({\left( {{b_3}} \right)_c} = \left( \begin{array}{l}\,\,\,1\,\\\,\,\,2\\\,\,\,0\end{array} \right)\). Thus, the \(\mathop P\limits_{C \to B} \) matrix can be written as \(\mathop P\limits_{C \to B} = \left( {\begin{array}{*{20}{c}}1&2&1\\0&1&2\\3&{ - 5}&0\end{array}} \right)\).

02

Use the result \({\left( x \right)_C} = P{\left( x \right)_B}\)

If \(x\)is the vector \(\left\{ {{t^2}} \right\}\), then according to the result \({\left( x \right)_c} = \mathop P\limits_{C \to B} {\left( x \right)_B}\), you can write

\(\mathop P\limits_{C \to B} {\left( x \right)_B} = \left( \begin{array}{l}0\\0\\1\end{array} \right)\).

03

Substitute the matrix for\(\mathop P\limits_{C \to B} \)and apply row reduction on the augmented matrix

\(\left( {\begin{array}{*{20}{c}}1&2&1&0\\0&1&2&0\\{ - 3}&{ - 5}&0&1\end{array}} \right) \sim \left( {\begin{array}{*{20}{c}}1&0&0&3\\0&1&0&{ - 2}\\0&0&0&1\end{array}} \right)\)

04

Compare the resulting matrix with \(P{\left( x \right)_B}\) and write the column matrix\({\left( x \right)_B}\)

\({\left( x \right)_B} = \left( \begin{array}{l}\,\,\,3\\ - 2\\\,\,\,1\end{array} \right)\)

05

Write \({t^2}\) as a linear combination of \(B\) using the \({\left( x \right)_B}\)matrix

\({t^2} = 3\left( {1 - 3{t^2}} \right) - 2\left( {2 + t - 5{t^2}} \right) + \left( {1 + 2t} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let S be a maximal linearly independent subset of a vector space V. In other words, S has the property that if a vector not in S is adjoined to S, the new set will no longer be linearly independent. Prove that S must be a basis of V. [Hint: What if S were linearly independent but not a basis of V?]

In Exercise 7, find the coordinate vector \({\left( x \right)_{\rm B}}\) of x relative to the given basis \({\rm B} = \left\{ {{b_{\bf{1}}},...,{b_n}} \right\}\).

7. \({b_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{1}}}\\{ - {\bf{3}}}\end{array}} \right),{b_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{3}}}\\{\bf{4}}\\{\bf{9}}\end{array}} \right),{b_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{2}}}\\{\bf{4}}\end{array}} \right),x = \left( {\begin{array}{*{20}{c}}{\bf{8}}\\{ - {\bf{9}}}\\{\bf{6}}\end{array}} \right)\)

Prove theorem 3 as follows: Given an \(m \times n\) matrix A, an element in \({\mathop{\rm Col}\nolimits} A\) has the form \(Ax\) for some x in \({\mathbb{R}^n}\). Let \(Ax\) and \(A{\mathop{\rm w}\nolimits} \) represent any two vectors in \({\mathop{\rm Col}\nolimits} A\).

  1. Explain why the zero vector is in \({\mathop{\rm Col}\nolimits} A\).
  2. Show that the vector \(A{\mathop{\rm x}\nolimits} + A{\mathop{\rm w}\nolimits} \) is in \({\mathop{\rm Col}\nolimits} A\).
  3. Given a scalar \(c\), show that \(c\left( {A{\mathop{\rm x}\nolimits} } \right)\) is in \({\mathop{\rm Col}\nolimits} A\).

If a \({\bf{3}} \times {\bf{8}}\) matrix A has a rank 3, find dim Nul A, dim Row A, and rank \({A^T}\).

Question 18: Suppose A is a \(4 \times 4\) matrix and B is a \(4 \times 2\) matrix, and let \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) represent a sequence of input vectors in \({\mathbb{R}^2}\).

  1. Set \({{\mathop{\rm x}\nolimits} _0} = 0\), compute \({{\mathop{\rm x}\nolimits} _1},...,{{\mathop{\rm x}\nolimits} _4}\) from equation (1), and write a formula for \({{\mathop{\rm x}\nolimits} _4}\) involving the controllability matrix \(M\) appearing in equation (2). (Note: The matrix \(M\) is constructed as a partitioned matrix. Its overall size here is \(4 \times 8\).)
  2. Suppose \(\left( {A,B} \right)\) is controllable and v is any vector in \({\mathbb{R}^4}\). Explain why there exists a control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) in \({\mathbb{R}^2}\) such that \({{\mathop{\rm x}\nolimits} _4} = {\mathop{\rm v}\nolimits} \).
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free