The set \(B = \left\{ {1 - {t^2},t - {t^2},2 - 2t + {t^2}} \right\}\) is a basis for \({{\mathop{\rm P}\nolimits} _2}\). Find the coordinate vector of \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + t - 6{t^2}\) relative to \(B\).

Answer:

The coordinate vector of \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + t - 6{t^2}\) relative to \(B\) is \({\left[ {\mathop{\rm p}\nolimits} \right]_B} = \left[ {\begin{array}{*{20}{c}}7\\{ - 3}\\{ - 2}\end{array}} \right]\).

Short Answer

Expert verified

Step 1: Equate the coefficients of the two polynomials

Step by step solution

01

Equate the coefficients of the two polynomials

Determine \({c_1},{c_2}\), and \({c_3}\) as shown below:

\[{c_1}\left( {1 - {t^2}} \right) + {c_2}\left( {t - {t^2}} \right) + {c_3}\left( {2 - 2t + {t^2}} \right) = {\mathop{\rm p}\nolimits} \left( t \right) = 3 + t - 6{t^2}\]

Equate the coefficients of the two polynomials to obtain the system of equations as shown below:

\[\begin{array}{c}{c_1} + \,\,\,\,\,\,\,2{c_3} = 3\\\,\,\,\,\,\,\,\,{c_2} - 2{c_3} = 1\\ - {c_1} - {c_2} + {c_3} = - 6\end{array}\]

02

Convert the system of equations into an augmented matrix

Convert the system of equations into an augmented matrix, as shown below:

\(\left[ {\begin{array}{*{20}{c}}1&0&2&3\\0&1&{ - 2}&1\\{ - 1}&{ - 1}&1&{ - 6}\end{array}} \right]\)

03

Apply the row operation

At row 3, add rows 1 and 3.

\( \sim \left[ {\begin{array}{*{20}{c}}1&0&2&3\\0&1&{ - 2}&1\\0&{ - 1}&3&{ - 3}\end{array}} \right]\)

At row 3, add rows 2 and 3.

\( \sim \left[ {\begin{array}{*{20}{c}}1&0&2&3\\0&1&{ - 2}&1\\0&0&1&{ - 2}\end{array}} \right]\)

At row 1, multiply row 3 by \(2\) and subtract it from row 1.

\( \sim \left[ {\begin{array}{*{20}{c}}1&0&0&7\\0&1&{ - 2}&1\\0&0&1&{ - 2}\end{array}} \right]\)

At row 2, multiply row 3 by 2 and add it to row 2.

\( \sim \left[ {\begin{array}{*{20}{c}}1&0&0&7\\0&1&0&{ - 3}\\0&0&1&{ - 2}\end{array}} \right]\)

04

Determine the coordinate vector of \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + t - 6{t^2}\)

The coordinate vector of \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + t - 6{t^2}\) is \({\left[ {\mathop{\rm p}\nolimits} \right]_B} = \left[ {\begin{array}{*{20}{c}}7\\{ - 3}\\{ - 2}\end{array}} \right]\).

It is also possible to solve this problem using the coordinate vectors of the given polynomials relative to the standard basis \(\left\{ {1,t,{t^2}} \right\}\). The same system of equations will be obtained in the result.

Thus, the coordinate vector of \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + t - 6{t^2}\) relative to \(B\) is \({\left[ {\mathop{\rm p}\nolimits} \right]_B} = \left[ {\begin{array}{*{20}{c}}7\\{ - 3}\\{ - 2}\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

21. (M) \(A = \left( {\begin{array}{*{20}{c}}0&1&0&0\\0&0&1&0\\0&0&0&1\\{ - 2}&{ - 4.2}&{ - 4.8}&{ - 3.6}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\0\\0\\{ - 1}\end{array}} \right)\).

Find a basis for the set of vectors in\({\mathbb{R}^{\bf{3}}}\)in the plane\(x + {\bf{2}}y + z = {\bf{0}}\). (Hint:Think of the equation as a “system” of homogeneous equations.)

(M) Let \(H = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2}} \right\}\) and \(K = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\), where

\({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}5\\3\\8\end{array}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}1\\3\\4\end{array}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}2\\{ - 1}\\5\end{array}} \right),{{\mathop{\rm v}\nolimits} _4} = \left( {\begin{array}{*{20}{c}}0\\{ - 12}\\{ - 28}\end{array}} \right)\)

Then \(H\) and \(K\) are subspaces of \({\mathbb{R}^3}\). In fact, \(H\) and \(K\) are planes in \({\mathbb{R}^3}\) through the origin, and they intersect in a line through 0. Find a nonzero vector w that generates that line. (Hint: w can be written as \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2}\) and also as \({c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\). To build w, solve the equation \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2} = {c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\) for the unknown \({c_j}'{\mathop{\rm s}\nolimits} \).)

If A is a \({\bf{6}} \times {\bf{4}}\) matrix, what is the smallest possible dimension of Null A?

What would you have to know about the solution set of a homogenous system of 18 linear equations 20 variables in order to understand that every associated nonhomogenous equation has a solution? Discuss.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free