Question:In Exercises 15–18, find a basis for the space spanned by the given vectors,\({{\bf{v}}_{\bf{1}}}, \ldots ,{{\bf{v}}_{\bf{5}}}\).

16. \(\left[ {\begin{array}{*{20}{c}}1\\{\bf{0}}\\{\bf{0}}\\{\bf{1}}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{1}}\\{ - {\bf{1}}}\\{\bf{1}}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{\bf{6}}\\{ - {\bf{1}}}\\{\bf{2}}\\{ - {\bf{1}}}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{3}}}\\{\bf{3}}\\{ - {\bf{4}}}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{3}}\\{ - {\bf{1}}}\\{\bf{1}}\end{array}} \right]\)

Short Answer

Expert verified

The basis for the space spanned by the vectors is \(\left\{ {\left[ {\begin{array}{*{20}{c}}1\\0\\0\\1\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\{ - 1}\\1\end{array}} \right],\left[ {\begin{array}{*{20}{c}}6\\{ - 1}\\2\\{ - 1}\end{array}} \right]} \right\}\).

Step by step solution

01

State the basis for Col A

The set of alllinear combinations of the columns of matrix A is Col A.It is called thecolumn space of A.Pivot columns are thebasisfor Col A.

02

Obtain the row-reduced echelon form

Consider the vectors\(\left[ {\begin{array}{*{20}{c}}1\\0\\0\\1\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\{ - 1}\\1\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}6\\{ - 1}\\2\\{ - 1}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}5\\{ - 3}\\3\\{ - 4}\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}0\\3\\{ - 1}\\1\end{array}} \right]\).

Five vectors span the column spaceof a matrix. So, construct matrix A using the given vectors as shown below:

\(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&6&5&0\\0&1&{ - 1}&{ - 3}&3\\0&{ - 1}&2&3&{ - 1}\\1&1&{ - 1}&{ - 4}&1\end{array}} \right]\)

Obtain theechelon formof matrix A as shown below:

Add\( - 1\)times row 1 to row 4 to get row 4.

\(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&6&5&0\\0&1&{ - 1}&{ - 3}&3\\0&{ - 1}&2&3&{ - 1}\\0&3&{ - 7}&{ - 9}&1\end{array}} \right]\)

Add row 2 to row 3 to get row 3.

\(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&6&5&0\\0&1&{ - 1}&{ - 3}&3\\0&0&1&0&2\\0&3&{ - 7}&{ - 9}&1\end{array}} \right]\)

Add\( - 3\)times row 2 to row 4 to get row 4.

\(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&6&5&0\\0&1&{ - 1}&{ - 3}&3\\0&0&1&0&2\\0&0&{ - 4}&0&{ - 8}\end{array}} \right]\)

Add 4 times row 3 to row 4 to get row 4.

\(A = \left[ {\begin{array}{*{20}{c}}1&{ - 2}&6&5&0\\0&1&{ - 1}&{ - 3}&3\\0&0&1&0&2\\0&0&0&0&0\end{array}} \right]\)

03

Write the basis for Col A

To identify the pivot and the pivot position, observe the leftmost column (nonzero column) of the matrix, that is, the pivot column. At the top of this column, 1 is the pivot.

A = \(\left[ {\begin{array}{*{20}{c}} {\boxed1}&{ - 2}&6&5&0 \\ 0&{\boxed1}&{ - 1}&{ - 3}&3 \\ 0&0&{\boxed1}&0&2 \\ 0&0&0&0&0 \end{array}} \right]\)

The first, second, and third columns have pivot elements.

The corresponding columns of matrix A are shown below:

\(\left[ {\begin{array}{*{20}{c}}1\\0\\0\\1\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\{ - 1}\\1\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}6\\{ - 1}\\2\\{ - 1}\end{array}} \right]\)

The column space is shown below:

\({\rm{Col }}A = \left\{ {\left[ {\begin{array}{*{20}{c}}1\\0\\0\\1\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\{ - 1}\\1\end{array}} \right],\left[ {\begin{array}{*{20}{c}}6\\{ - 1}\\2\\{ - 1}\end{array}} \right]} \right\}\)

Thus, the basis for Col Ais \(\left\{ {\left[ {\begin{array}{*{20}{c}}1\\0\\0\\1\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\{ - 1}\\1\end{array}} \right],\left[ {\begin{array}{*{20}{c}}6\\{ - 1}\\2\\{ - 1}\end{array}} \right]} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Define by \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 1 \right)}\end{array}} \right)\). For instance, if \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + 5t + 7{t^2}\), then \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}3\\{15}\end{array}} \right)\).

  1. Show that \(T\) is a linear transformation. (Hint: For arbitrary polynomials p, q in \({{\mathop{\rm P}\nolimits} _2}\), compute \(T\left( {{\mathop{\rm p}\nolimits} + {\mathop{\rm q}\nolimits} } \right)\) and \(T\left( {c{\mathop{\rm p}\nolimits} } \right)\).)
  2. Find a polynomial p in \({{\mathop{\rm P}\nolimits} _2}\) that spans the kernel of \(T\), and describe the range of \(T\).

Find a basis for the set of vectors in\({\mathbb{R}^{\bf{3}}}\)in the plane\(x + {\bf{2}}y + z = {\bf{0}}\). (Hint:Think of the equation as a “system” of homogeneous equations.)

Suppose a \({\bf{5}} \times {\bf{6}}\) matrix A has four pivot columns. What is dim Nul A? Is \({\bf{Col}}\,A = {\mathbb{R}^{\bf{3}}}\)? Why or why not?

Consider the following two systems of equations:

\(\begin{array}{c}5{x_1} + {x_2} - 3{x_3} = 0\\ - 9{x_1} + 2{x_2} + 5{x_3} = 1\\4{x_1} + {x_2} - 6{x_3} = 9\end{array}\) \(\begin{array}{c}5{x_1} + {x_2} - 3{x_3} = 0\\ - 9{x_1} + 2{x_2} + 5{x_3} = 5\\4{x_1} + {x_2} - 6{x_3} = 45\end{array}\)

It can be shown that the first system of a solution. Use this fact and the theory from this section to explain why the second system must also have a solution. (Make no row operations.)

Let \(B = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{4}}}\end{array}} \right),\,\left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{9}}\end{array}} \right)\,} \right\}\). Since the coordinate mapping determined by B is a linear transformation from \({\mathbb{R}^{\bf{2}}}\) into \({\mathbb{R}^{\bf{2}}}\), this mapping must be implemented by some \({\bf{2}} \times {\bf{2}}\) matrix A. Find it. (Hint: Multiplication by A should transform a vector x into its coordinate vector \({\left( {\bf{x}} \right)_B}\)).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free