In Exercises 15 and 16, mark each statement True or False. Justify each answer. Unless stated otherwise, \(B\) is a basis for a vector space \(V\).

In Exercises 15 and 16, mark each statement True or False. Justify each answer. Unless stated otherwise, \(B\) is a basis for a vector space \(V\).

16.

  1. If\(B\)is the standard basis for\({\mathbb{R}^n}\)then the\(B\)-coordinate vector of an\({\mathop{\rm x}\nolimits} \)in\({\mathbb{R}^n}\)is x itself.
  2. The correspondence\({\left( {\mathop{\rm x}\nolimits} \right)_B} \mapsto {\mathop{\rm x}\nolimits} \)is called coordinate mapping.
  3. In some cases, a plane in\({\mathbb{R}^3}\)can be isomorphic to\({\mathbb{R}^2}\).

Short Answer

Expert verified

a. The given statement is true.

b. The given statement is false.

c. The given statement is true.

Step by step solution

01

Determine whether the given statement is true or false

a)

The entries in vector\({\mathop{\rm x}\nolimits} = \left( {\begin{array}{*{20}{c}}1\\6\end{array}} \right)\)are thecoordinates of\({\mathop{\rm x}\nolimits} \)relative to the standard basis \(\varepsilon = \left\{ {{{\mathop{\rm e}\nolimits} _1},{{\mathop{\rm e}\nolimits} _2}} \right\}\). If\(\varepsilon = \left\{ {{{\mathop{\rm e}\nolimits} _1},{{\mathop{\rm e}\nolimits} _2}} \right\}\), then\({\left( {\mathop{\rm x}\nolimits} \right)_\varepsilon } = {\mathop{\rm x}\nolimits} \).

Thus, statement (a) is true.

02

Determine whether the given statement is true or false

b)

Let\(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},{{\mathop{\rm b}\nolimits} _2},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\)be a basis forvector space\(V\). Then the coordinate mapping \({\mathop{\rm x}\nolimits} \mapsto {\left( {\mathop{\rm x}\nolimits} \right)_B}\)is one-to-one linear transformation from\(V\)onto\({\mathbb{R}^n}\).

Thus, statement (b) is false.

03

Determine whether the given statement is true or false

c)

The plane isisomorphic to\({\mathbb{R}^2}\)if it passes through theorigin, as shown in Example 7.

Thus, statement (c) is true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let V be a vector space that contains a linearly independent set \(\left\{ {{u_{\bf{1}}},{u_{\bf{2}}},{u_{\bf{3}}},{u_{\bf{4}}}} \right\}\). Describe how to construct a set of vectors \(\left\{ {{v_{\bf{1}}},{v_{\bf{2}}},{v_{\bf{3}}},{v_{\bf{4}}}} \right\}\) in V such that \(\left\{ {{v_{\bf{1}}},{v_{\bf{3}}}} \right\}\) is a basis for Span\(\left\{ {{v_{\bf{1}}},{v_{\bf{2}}},{v_{\bf{3}}},{v_{\bf{4}}}} \right\}\).

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

16. If \(A\) is an \(m \times n\) matrix of rank\(r\), then a rank factorization of \(A\) is an equation of the form \(A = CR\), where \(C\) is an \(m \times r\) matrix of rank\(r\) and \(R\) is an \(r \times n\) matrix of rank \(r\). Such a factorization always exists (Exercise 38 in Section 4.6). Given any two \(m \times n\) matrices \(A\) and \(B\), use rank factorizations of \(A\) and \(B\) to prove that rank\(\left( {A + B} \right) \le {\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B\).

(Hint: Write \(A + B\) as the product of two partitioned matrices.)

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

20. \(A = \left( {\begin{array}{*{20}{c}}{.8}&{ - .3}&0\\{.2}&{.5}&1\\0&0&{ - .5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\1\\0\end{array}} \right)\).

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

14. Show that if \(Q\) is an invertible, then \({\mathop{\rm rank}\nolimits} AQ = {\mathop{\rm rank}\nolimits} A\). (Hint: Use Exercise 13 to study \({\mathop{\rm rank}\nolimits} {\left( {AQ} \right)^T}\).)

Justify the following equalities:

a.\({\rm{dim Row }}A{\rm{ + dim Nul }}A = n{\rm{ }}\)

b.\({\rm{dim Col }}A{\rm{ + dim Nul }}{A^T} = m\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free