[M] (Calculus required) Recall from calculus that integrals such as

\(\int {\left( {{\bf{5co}}{{\bf{s}}^{\bf{3}}}t - {\bf{6co}}{{\bf{s}}^{\bf{4}}}t + {\bf{5co}}{{\bf{s}}^{\bf{5}}}t - {\bf{12co}}{{\bf{s}}^{\bf{6}}}t} \right){\bf{d}}t} \) (10)

Are tedious to compute. (The usual method is to apply integration by parts repeteatedly and use the half angle formula.) Use the matrix P or \({P^{ - {\bf{1}}}}\) from Exercise 17 to transform (10); then compute the integral.

Short Answer

Expert verified

\( - 6t + \frac{{55}}{8}\sin t - \frac{{69}}{{16}}\sin \left( {2t} \right) + \frac{{15}}{{16}}\sin \left( {3t} \right) - \frac{3}{4}\sin \left( {4t} \right) + \frac{1}{{16}}\sin \left( {5t} \right) - \frac{1}{{16}}\sin \left( {6t} \right) + C\)

Step by step solution

01

Write the coordinate of the integrand

The C coordinate of the integrand is \(\left( {0,0,0,5, - 6,5, - 12} \right)\).

By the inverse matrix \({P^{ - 1}} = \frac{1}{{32}}\left[ {\begin{array}{*{20}{c}}{32}&0&{16}&0&{12}&0&{10}\\0&{32}&0&{24}&0&{20}&0\\0&0&{16}&0&{16}&0&{15}\\0&0&0&8&0&{10}&0\\0&0&0&0&4&0&6\\0&0&0&0&0&2&0\\0&0&0&0&0&0&1\end{array}} \right]\), the B coordinate is found as

\(\begin{aligned} {P^{ - 1}}\left( {0,\,0,\,0,\,5,\, - 6,\,5,\, - 12} \right) &= \frac{1}{{32}}\left[ {\begin{array}{*{20}{c}}{32}&0&{16}&0&{12}&0&{10}\\0&{32}&0&{24}&0&{20}&0\\0&0&{16}&0&{16}&0&{15}\\0&0&0&8&0&{10}&0\\0&0&0&0&4&0&6\\0&0&0&0&0&2&0\\0&0&0&0&0&0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}0\\0\\0\\5\\{ - 6}\\5\\{ - 12}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{ - 6}&{\frac{{55}}{8}}&{ - \frac{{69}}{8}}&{\frac{{45}}{{16}}}&{ - 3}&{\frac{5}{{16}}}&{ - \frac{3}{8}}\end{array}} \right].\end{aligned}\)

02

Change the integral using the B coordinate

Matrix P is

\(P = \left[ {\begin{array}{*{20}{c}}1&0&{ - 1}&0&1&0&{ - 1}\\0&1&0&{ - 3}&0&5&0\\0&0&2&0&{ - 8}&0&{18}\\0&0&0&4&0&{ - 20}&0\\0&0&0&0&8&0&{ - 48}\\0&0&0&0&0&{16}&0\\0&0&0&0&0&0&{32}\end{array}} \right]\).

03

Find the inverse of P

Using the B coordinate, the given integral form can be written as

\(\int {\left( { - 6 + \frac{{55}}{8}\cos t - \frac{{69}}{8}\cos 2t + \frac{{45}}{{16}}\cos 3t - 3\cos 4t + \frac{5}{{16}}\cos 5t - \frac{3}{8}\cos 6t} \right){\rm{d}}t} \).

04

Integrate the integral using MATLAB

Use the following code forintegration:

\(\begin{array}{c} > > {\rm{fun}} = - 6 + \frac{{55}}{8}\cos t - \frac{{69}}{8}\cos 2t + \frac{{45}}{{16}}\cos 3t - 3\cos 4t + \frac{5}{{16}}\cos 5t - \frac{3}{8}\cos 6t;\\ > > F = {\mathop{\rm int}} ({\rm{fun}});\end{array}\)

So, the value of integral is

\( - 6t + \frac{{55}}{8}\sin t - \frac{{69}}{{16}}\sin \left( {2t} \right) + \frac{{15}}{{16}}\sin \left( {3t} \right) - \frac{3}{4}\sin \left( {4t} \right) + \frac{1}{{16}}\sin \left( {5t} \right) - \frac{1}{{16}}\sin \left( {6t} \right) + C\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\)and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Given vectors, \({u_{\bf{1}}}\),….,\({u_p}\) and w in V, show that w is a linear combination of \({u_{\bf{1}}}\),….,\({u_p}\) if and only if \({\left( w \right)_B}\) is a linear combination of vectors \({\left( {{{\bf{u}}_{\bf{1}}}} \right)_B}\),….,\({\left( {{{\bf{u}}_p}} \right)_B}\).

Suppose a nonhomogeneous system of nine linear equations in ten unknowns has a solution for all possible constants on the right sides of the equations. Is it possible to find two nonzero solutions of the associated homogeneous system that are not multiples of each other? Discuss.

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

16. If \(A\) is an \(m \times n\) matrix of rank\(r\), then a rank factorization of \(A\) is an equation of the form \(A = CR\), where \(C\) is an \(m \times r\) matrix of rank\(r\) and \(R\) is an \(r \times n\) matrix of rank \(r\). Such a factorization always exists (Exercise 38 in Section 4.6). Given any two \(m \times n\) matrices \(A\) and \(B\), use rank factorizations of \(A\) and \(B\) to prove that rank\(\left( {A + B} \right) \le {\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B\).

(Hint: Write \(A + B\) as the product of two partitioned matrices.)

Let be a basis of\({\mathbb{R}^n}\). .Produce a description of an \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\)matrix A that implements the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\). Find it. (Hint: Multiplication by A should transform a vector x into its coordinate vector \({\left( {\bf{x}} \right)_B}\)). (See Exercise 21.)

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

20. \(A = \left( {\begin{array}{*{20}{c}}{.8}&{ - .3}&0\\{.2}&{.5}&1\\0&0&{ - .5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\1\\0\end{array}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free