Let \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\) be a basis for a vector space \(V\). Explain why the \(B - \)coordinate vectors of \({{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}\) are the columns \({{\mathop{\rm e}\nolimits} _1},...,{{\mathop{\rm e}\nolimits} _n}\) of the \(n \times n\) identity matrix.

Answer:

The \(B - \)coordinate vectors of \({{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}\) are columns \({{\mathop{\rm e}\nolimits} _1},...,{{\mathop{\rm e}\nolimits} _n}\) of the \(n \times n\) identity matrix.

Short Answer

Expert verified

The \(B - \)coordinate vectors of \({{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}\) are columns \({{\mathop{\rm e}\nolimits} _1},...,{{\mathop{\rm e}\nolimits} _n}\) of the \(n \times n\) identity matrix.

Step by step solution

01

State the B-coordinate vector

Suppose \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\) is a basis for \(V\) and x is in \(V\). Thecoordinates of \({\mathop{\rm x}\nolimits} \) relative tobasis \(B\)(or the \(B\)-coordinates of x) are the weights \({c_1},...,{c_n}\), such that \({\mathop{\rm x}\nolimits} = {c_1}{b_1} + ... + {c_n}{b_n}\).

02

Explain that the \(B - \)coordinate vectors of \({{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}\) are columns \({{\mathop{\rm e}\nolimits} _1},...,{{\mathop{\rm e}\nolimits} _n}\) of the identity matrix 

For each \(k\), \({{\mathop{\rm b}\nolimits} _k} = 0 \cdot {{\mathop{\rm b}\nolimits} _1} + \cdots + 1 \cdot {{\mathop{\rm b}\nolimits} _k} + \cdots + 0 \cdot {{\mathop{\rm b}\nolimits} _n}\).

Therefore, \({\left( {{{\mathop{\rm b}\nolimits} _k}} \right)_B} = \left( {0,...,1,...,0} \right) = {{\mathop{\rm e}\nolimits} _k}\).

Thus, the \(B - \)coordinate vectors of \({{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}\) are columns \({{\mathop{\rm e}\nolimits} _1},...,{{\mathop{\rm e}\nolimits} _n}\) of the \(n \times n\) identity matrix.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Which of the subspaces \({\rm{Row }}A\) , \({\rm{Col }}A\), \({\rm{Nul }}A\), \({\rm{Row}}\,{A^T}\) , \({\rm{Col}}\,{A^T}\) , and \({\rm{Nul}}\,{A^T}\) are in \({\mathbb{R}^m}\) and which are in \({\mathbb{R}^n}\) ? How many distinct subspaces are in this list?.

Define by \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}{{\mathop{\rm p}\nolimits} \left( 0 \right)}\\{{\mathop{\rm p}\nolimits} \left( 1 \right)}\end{array}} \right)\). For instance, if \({\mathop{\rm p}\nolimits} \left( t \right) = 3 + 5t + 7{t^2}\), then \(T\left( {\mathop{\rm p}\nolimits} \right) = \left( {\begin{array}{*{20}{c}}3\\{15}\end{array}} \right)\).

  1. Show that \(T\) is a linear transformation. (Hint: For arbitrary polynomials p, q in \({{\mathop{\rm P}\nolimits} _2}\), compute \(T\left( {{\mathop{\rm p}\nolimits} + {\mathop{\rm q}\nolimits} } \right)\) and \(T\left( {c{\mathop{\rm p}\nolimits} } \right)\).)
  2. Find a polynomial p in \({{\mathop{\rm P}\nolimits} _2}\) that spans the kernel of \(T\), and describe the range of \(T\).

Let \(B = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{4}}}\end{array}} \right),\,\left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{9}}\end{array}} \right)\,} \right\}\). Since the coordinate mapping determined by B is a linear transformation from \({\mathbb{R}^{\bf{2}}}\) into \({\mathbb{R}^{\bf{2}}}\), this mapping must be implemented by some \({\bf{2}} \times {\bf{2}}\) matrix A. Find it. (Hint: Multiplication by A should transform a vector x into its coordinate vector \({\left( {\bf{x}} \right)_B}\)).

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show the coordinate mapping is one to one. (Hint: Suppose \({\left( {\bf{u}} \right)_B} = {\left( {\bf{w}} \right)_B}\) for some u and w in V, and show that \({\bf{u}} = {\bf{w}}\)).

If the null space of an \({\bf{8}} \times {\bf{5}}\) matrix A is 2-dimensional, what is the dimension of the row space of A?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free