Question:Examine powers of a regular stochastic matrix.

a. Compute\({p^k}\)for\(k = 2,3,4,5\), when

\(P = \left[ {\begin{array}{*{20}{c}}{.3355}&{.3682}&{.3067}&{.0389}\\{.2663}&{.2723}&{.3277}&{.5451}\\{.1935}&{.1502}&{.1589}&{.2395}\\{.2047}&{.2093}&{.2067}&{.1765}\end{array}} \right]\)

Display calculations to four decimal places. What happens to the columns of\({p^k}\)as\(k\)increases? Compute thesteady-state vector for P.

b. Compute\({Q^k}\)for\(k = 10,20,...,80\), when

\(Q = \left[ {\begin{array}{*{20}{c}}{.97}&{.05}&{.10}\\0&{.90}&{.05}\\{.03}&{.05}&{.85}\end{array}} \right]\)

(Stability for\({Q^k}\)to four decimal places may require\(k = 116\)or more.) Compute the steady-state vector for Q.

c. Use Theorem 18 to explain what you found in parts (a) and (b).

Short Answer

Expert verified

(a) The steady-state vector q is\(\left[ {\begin{array}{*{20}{c}}{.2816}\\{.3355}\\{.1819}\\{.2009}\end{array}} \right]\).As\(k\)increases,\({p^k}\)converges to the common vectorq.

(b) The steady-state vector q is\(\left[ {\begin{array}{*{20}{c}}{.7353}\\{.0882}\\{.1765}\end{array}} \right]\).As\(k\)increases,\({Q^k}\)converges to the common vectorq.

(c) In both parts, as \(k\) approaches infinity,\({p^k}\) and \({Q^k}\) converge to the steady-state vector.

Step by step solution

01

(a) Step 1: Compute the powers of a stochastic matrix

Compute the powers of the stochastic matrix using the MATLAB command shown below:

Substitute 2 for\(k\)in\({p^k}\)to obtain\({p^2}\).

\(\begin{array}{l} > > P = \left[ \begin{array}{l}{\rm{.3355 }}{\rm{.3682 }}{\rm{.3067 }}{\rm{.0389; }}{\rm{.2663 }}{\rm{.2723 }}{\rm{.3067 }}{\rm{.5451;}}\\{\rm{.1935 }}{\rm{.1502 }}{\rm{.1589 }}{\rm{.2395; }}{\rm{.2047 }}{\rm{.2093 }}{\rm{.2067 }}{\rm{.1765}}\end{array} \right];\\ > > A = P^2\end{array}\)

\({P^2} = \left[ {\begin{array}{*{20}{c}}{.2779}&{.2780}&{.2803}&{.2941}\\{.3368}&{.3355}&{.3357}&{.3335}\\{.1847}&{.1861}&{.1833}&{.1697}\\{.2005}&{.2004}&{.2007}&{.2027}\end{array}} \right]\)

Substitute 3 for\(k\)in\({P^k}\)to obtain\({P^3}\).

\(\begin{array}{l} > > P = \left[ \begin{array}{l}{\rm{.3355 }}{\rm{.3682 }}{\rm{.3067 }}{\rm{.0389; }}{\rm{.2663 }}{\rm{.2723 }}{\rm{.3067 }}{\rm{.5451;}}\\{\rm{.1935 }}{\rm{.1502 }}{\rm{.1589 }}{\rm{.2395; }}{\rm{.2047 }}{\rm{.2093 }}{\rm{.2067 }}{\rm{.1765}}\end{array} \right];\\ > > A = P^3\end{array}\)

\({P^3} = \left[ {\begin{array}{*{20}{c}}{.2817}&{.2817}&{.2817}&{.2814}\\{.3356}&{.3356}&{.3355}&{.3352}\\{.1817}&{.1817}&{.1819}&{.1825}\\{.2010}&{.2010}&{.2010}&{.2009}\end{array}} \right]\)

Substitute 4 for\(k\)in\({P^k}\)to obtain\({P^4}\).

\(\begin{array}{l} > > P = \left[ \begin{array}{l}{\rm{.3355 }}{\rm{.3682 }}{\rm{.3067 }}{\rm{.0389; }}{\rm{.2663 }}{\rm{.2723 }}{\rm{.3067 }}{\rm{.5451;}}\\{\rm{.1935 }}{\rm{.1502 }}{\rm{.1589 }}{\rm{.2395; }}{\rm{.2047 }}{\rm{.2093 }}{\rm{.2067 }}{\rm{.1765}}\end{array} \right];\\ > > A = P^4\end{array}\)

\({P^4} = \left[ {\begin{array}{*{20}{c}}{.2816}&{.2816}&{.2816}&{.2816}\\{.3355}&{.3355}&{.3355}&{.3355}\\{.1819}&{.1819}&{.1819}&{.1819}\\{.2009}&{.2009}&{.2009}&{.2009}\end{array}} \right]\)

Substitute 5 for\(k\)in\({P^k}\)to obtain\({P^5}\).

\(\begin{array}{l} > > P = \left[ \begin{array}{l}{\rm{.3355 }}{\rm{.3682 }}{\rm{.3067 }}{\rm{.0389; }}{\rm{.2663 }}{\rm{.2723 }}{\rm{.3067 }}{\rm{.5451;}}\\{\rm{.1935 }}{\rm{.1502 }}{\rm{.1589 }}{\rm{.2395; }}{\rm{.2047 }}{\rm{.2093 }}{\rm{.2067 }}{\rm{.1765}}\end{array} \right];\\ > > A = P^5\end{array}\)

\({P^5} = \left[ {\begin{array}{*{20}{c}}{.2816}&{.2816}&{.2816}&{.2816}\\{.3355}&{.3355}&{.3355}&{.3355}\\{.1819}&{.1819}&{.1819}&{.1819}\\{.2009}&{.2009}&{.2009}&{.2009}\end{array}} \right]\)

Thus, as\(k\)increases,\({p^k}\)converges to the common vector\(\left[ {\begin{array}{*{20}{c}}{.2816}\\{.3355}\\{.1819}\\{.2009}\end{array}} \right]\).

It means the steady-state vector q is \(\left[ {\begin{array}{*{20}{c}}{.2816}\\{.3355}\\{.1819}\\{.2009}\end{array}} \right]\).

02

(b) Step 2: Compute the powers of a stochastic matrix

Compute the powers of the stochastic matrix using the MATLAB command shown below:

Substitute 10 for\(k\)in\({Q^k}\)to obtain\({Q^{10}}\).

\(\begin{array}{l} > > Q = \left[ {{\rm{0}}{\rm{.97 }}{\rm{.0}}{\rm{.05 0}}{\rm{.10; 0 0}}{\rm{.90 0}}{\rm{.05; 0}}{\rm{.03 0}}{\rm{.05 0}}{\rm{.85}}} \right];\\ > > A = Q^10\end{array}\)

\({Q^{10}} = \left[ {\begin{array}{*{20}{c}}{.8222}&{.4044}&{.5385}\\{.0324}&{.3966}&{.1666}\\{.1453}&{.1990}&{.2949}\end{array}} \right]\)

Substitute 20 for\(k\)in\({Q^k}\)to obtain\({Q^{20}}\).

\(\begin{array}{l} > > Q = \left[ {{\rm{0}}{\rm{.97 }}{\rm{.0}}{\rm{.05 0}}{\rm{.10; 0 0}}{\rm{.90 0}}{\rm{.05; 0}}{\rm{.03 0}}{\rm{.05 0}}{\rm{.85}}} \right];\\ > > A = Q^20\end{array}\)

\({Q^{20}} = \left[ {\begin{array}{*{20}{c}}{.7674}&{.6000}&{.6690}\\{.0637}&{.2036}&{.1326}\\{.1688}&{.1964}&{.1984}\end{array}} \right]\)

Substitute 30 for\(k\)in\({Q^k}\)to obtain\({Q^{30}}\).

\(\begin{array}{l} > > Q = \left[ {{\rm{0}}{\rm{.97 }}{\rm{.0}}{\rm{.05 0}}{\rm{.10; 0 0}}{\rm{.90 0}}{\rm{.05; 0}}{\rm{.03 0}}{\rm{.05 0}}{\rm{.85}}} \right];\\ > > A = Q^30\end{array}\)

\({Q^{30}} = \left[ {\begin{array}{*{20}{c}}{.7477}&{.6815}&{.7105}\\{.0783}&{.1329}&{.1074}\\{.17}&{}&{}\end{array}} \right]\)

Substitute 40 for\(k\)in\({Q^k}\)to obtain\({Q^{40}}\).

\(\begin{array}{l} > > Q = \left[ {{\rm{0}}{\rm{.97 }}{\rm{.0}}{\rm{.05 0}}{\rm{.10; 0 0}}{\rm{.90 0}}{\rm{.05; 0}}{\rm{.03 0}}{\rm{.05 0}}{\rm{.85}}} \right];\\ > > A = Q^40\end{array}\)

\({Q^{40}} = \left[ {\begin{array}{*{20}{c}}{.7401}&{.7140}&{.7257}\\{.0843}&{.1057}&{.0960}\\{.1756}&{.1802}&{.1783}\end{array}} \right]\)

Substitute 50 for\(k\)in\({Q^k}\)to obtain\({Q^{50}}\).

\(\begin{array}{l} > > Q = \left[ {{\rm{0}}{\rm{.97 }}{\rm{.0}}{\rm{.05 0}}{\rm{.10; 0 0}}{\rm{.90 0}}{\rm{.05; 0}}{\rm{.03 0}}{\rm{.05 0}}{\rm{.85}}} \right];\\ > > A = Q^50\end{array}\)

\({Q^{50}} = \left[ {\begin{array}{*{20}{c}}{.7372}&{.7269}&{.7315}\\{.0867}&{.0951}&{.0913}\\{.1761}&{.1780}&{.1772}\end{array}} \right]\)

Substitute 60 for\(k\)in\({Q^k}\)to obtain\({Q^{60}}\).

\(\begin{array}{l} > > Q = \left[ {{\rm{0}}{\rm{.97 }}{\rm{.0}}{\rm{.05 0}}{\rm{.10; 0 0}}{\rm{.90 0}}{\rm{.05; 0}}{\rm{.03 0}}{\rm{.05 0}}{\rm{.85}}} \right];\\ > > A = Q^60\end{array}\)

\({Q^{60}} = \left[ {\begin{array}{*{20}{c}}{.7360}&{.7320}&{.7338}\\{.0876}&{.0909}&{.0894}\\{.1763}&{.1771}&{.1767}\end{array}} \right]\)

Substitute 70 for\(k\)in\({Q^k}\)to obtain\({Q^{70}}\).

\(\begin{array}{l} > > Q = \left[ {{\rm{0}}{\rm{.97 }}{\rm{.0}}{\rm{.05 0}}{\rm{.10; 0 0}}{\rm{.90 0}}{\rm{.05; 0}}{\rm{.03 0}}{\rm{.05 0}}{\rm{.85}}} \right];\\ > > A = Q^70\end{array}\)

\({Q^{70}} = \left[ {\begin{array}{*{20}{c}}{.7356}&{.7340}&{.7347}\\{.0880}&{.0893}&{.0887}\\{.1764}&{.1767}&{.1766}\end{array}} \right]\)

Substitute 80 for\(k\)in\({Q^k}\)to obtain\({Q^{80}}\).

\(\begin{array}{l} > > Q = \left[ {{\rm{0}}{\rm{.97 }}{\rm{.0}}{\rm{.05 0}}{\rm{.10; 0 0}}{\rm{.90 0}}{\rm{.05; 0}}{\rm{.03 0}}{\rm{.05 0}}{\rm{.85}}} \right];\\ > > A = Q^80\end{array}\)

\({Q^{80}} = \left[ {\begin{array}{*{20}{c}}{.7354}&{.7348}&{.7351}\\{.0881}&{.0887}&{.0884}\\{.1764}&{.1766}&{.1765}\end{array}} \right]\)

Substitute 117 for\(k\)in\({Q^k}\)to obtain\({Q^{117}}\).

\(\begin{array}{l} > > Q = \left[ {{\rm{0}}{\rm{.97 }}{\rm{.0}}{\rm{.05 0}}{\rm{.10; 0 0}}{\rm{.90 0}}{\rm{.05; 0}}{\rm{.03 0}}{\rm{.05 0}}{\rm{.85}}} \right];\\ > > A = Q^117\end{array}\)

\({Q^{117}} = \left[ {\begin{array}{*{20}{c}}{.7353}&{.7353}&{.7353}\\{.0882}&{.0882}&{.0882}\\{.1765}&{.1765}&{.1765}\end{array}} \right]\)

Thus, as\(k\)increases,\({Q^k}\)converges to the common vector\(\left[ {\begin{array}{*{20}{c}}{.7353}\\{.0882}\\{.1765}\end{array}} \right]\).

It means the steady-state vector q is\(\left[ {\begin{array}{*{20}{c}}{.7353}\\{.0882}\\{.1765}\end{array}} \right]\).

03

(c) Step 3: Observe part (a) and part (b)

From parts (a) and (b), the\(n \times n\)stochastic matrix\(P\)converges to\(q\)(steady-state vector) or a common vector as\(k\)tends to infinity.

So,\({{\bf{x}}_k} = {p^k}{{\bf{x}}_0}\)converges to q as \(k \to \infty \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose a nonhomogeneous system of nine linear equations in ten unknowns has a solution for all possible constants on the right sides of the equations. Is it possible to find two nonzero solutions of the associated homogeneous system that are not multiples of each other? Discuss.

If a \({\bf{3}} \times {\bf{8}}\) matrix A has a rank 3, find dim Nul A, dim Row A, and rank \({A^T}\).

Suppose the solutions of a homogeneous system of five linear equations in six unknowns are all multiples of one nonzero solution. Will the system necessarily have a solution for every possible choice of constants on the right sides of the equations? Explain.

In Exercise 3, find the vector x determined by the given coordinate vector \({\left( x \right)_{\rm B}}\) and the given basis \({\rm B}\).

3. \({\rm B} = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{4}}}\\{\bf{3}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{2}}\\{ - {\bf{2}}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{7}}}\\{\bf{0}}\end{array}} \right)} \right\},{\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{\bf{3}}\\{\bf{0}}\\{ - {\bf{1}}}\end{array}} \right)\)

Let V be a vector space that contains a linearly independent set \(\left\{ {{u_{\bf{1}}},{u_{\bf{2}}},{u_{\bf{3}}},{u_{\bf{4}}}} \right\}\). Describe how to construct a set of vectors \(\left\{ {{v_{\bf{1}}},{v_{\bf{2}}},{v_{\bf{3}}},{v_{\bf{4}}}} \right\}\) in V such that \(\left\{ {{v_{\bf{1}}},{v_{\bf{3}}}} \right\}\) is a basis for Span\(\left\{ {{v_{\bf{1}}},{v_{\bf{2}}},{v_{\bf{3}}},{v_{\bf{4}}}} \right\}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free