Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show the coordinate mapping is one to one. (Hint: Suppose \({\left( {\bf{u}} \right)_B} = {\left( {\bf{w}} \right)_B}\) for some u and w in V, and show that \({\bf{u}} = {\bf{w}}\)).

Short Answer

Expert verified

The given mapping is one to one.

Step by step solution

01

Write the vectors \({\left( {\bf{u}} \right)_B}\) and \({\left( {\bf{w}} \right)_B}\)

The basis for uand v is V.

\(\begin{array}{l}{\bf{u}} = {p_1}{{\bf{b}}_1} + .... + {p_n}{{\bf{b}}_n}\\{\bf{w}} = {q_1}{{\bf{b}}_1} + .... + {q_n}{{\bf{b}}_n}\end{array}\)

So, the changes of coordinate matrices are written as:

\({\left( {\bf{u}} \right)_B} = \left( {\begin{array}{*{20}{c}}{{p_1}}\\ \vdots \\{{p_n}}\end{array}} \right)\) and \({\left( {\bf{w}} \right)_B} = \left( {\begin{array}{*{20}{c}}{{q_1}}\\ \vdots \\{{q_n}}\end{array}} \right)\)

02

check for \({\left( {\bf{u}} \right)_B} = {\left( {\bf{w}} \right)_B}\)

If \({\left( {\bf{u}} \right)_B} = {\left( {\bf{w}} \right)_B}\), then

\(\left( {\begin{array}{*{20}{c}}{{p_1}}\\ \vdots \\{{p_n}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{{q_1}}\\ \vdots \\{{q_n}}\end{array}} \right)\)

\({p_1}{{\bf{b}}_1} = {q_1}{{\bf{b}}_1},\;{p_2}{{\bf{b}}_2} = {q_2}{{\bf{b}}_2},....,{p_n}{{\bf{b}}_n} = {q_n}{{\bf{b}}_n}\).

So, \({\bf{u}} = {\bf{w}}\)

Thus, the given mapping is one to one.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the polynomials \({p_{\bf{1}}}\left( t \right) = {\bf{1}} + {t^{\bf{2}}},{p_{\bf{2}}}\left( t \right) = {\bf{1}} - {t^{\bf{2}}}\). Is \(\left\{ {{p_{\bf{1}}},{p_{\bf{2}}}} \right\}\) a linearly independent set in \({{\bf{P}}_{\bf{3}}}\)? Why or why not?

(M) Let \(H = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2}} \right\}\) and \(K = {\mathop{\rm Span}\nolimits} \left\{ {{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\), where

\({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}5\\3\\8\end{array}} \right),{{\mathop{\rm v}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}1\\3\\4\end{array}} \right),{{\mathop{\rm v}\nolimits} _3} = \left( {\begin{array}{*{20}{c}}2\\{ - 1}\\5\end{array}} \right),{{\mathop{\rm v}\nolimits} _4} = \left( {\begin{array}{*{20}{c}}0\\{ - 12}\\{ - 28}\end{array}} \right)\)

Then \(H\) and \(K\) are subspaces of \({\mathbb{R}^3}\). In fact, \(H\) and \(K\) are planes in \({\mathbb{R}^3}\) through the origin, and they intersect in a line through 0. Find a nonzero vector w that generates that line. (Hint: w can be written as \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2}\) and also as \({c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\). To build w, solve the equation \({c_1}{{\mathop{\rm v}\nolimits} _1} + {c_2}{{\mathop{\rm v}\nolimits} _2} = {c_3}{{\mathop{\rm v}\nolimits} _3} + {c_4}{{\mathop{\rm v}\nolimits} _4}\) for the unknown \({c_j}'{\mathop{\rm s}\nolimits} \).)

Let \(V\) and \(W\) be vector spaces, and let \(T:V \to W\) be a linear transformation. Given a subspace \(U\) of \(V\), let \(T\left( U \right)\) denote the set of all images of the form \(T\left( {\mathop{\rm x}\nolimits} \right)\), where x is in \(U\). Show that \(T\left( U \right)\) is a subspace of \(W\).

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

19. \(A = \left( {\begin{array}{*{20}{c}}{.9}&1&0\\0&{ - .9}&0\\0&0&{.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}0\\1\\1\end{array}} \right)\).

In Exercise 6, find the coordinate vector of x relative to the given basis \({\rm B} = \left\{ {{b_{\bf{1}}},...,{b_n}} \right\}\).

6. \({b_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{2}}}\end{array}} \right),{b_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{ - {\bf{6}}}\end{array}} \right),x = \left( {\begin{array}{*{20}{c}}{\bf{4}}\\{\bf{0}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free