Let \({{\bf{p}}_1}\left( t \right) = {\bf{1}} + {t^{\bf{2}}}\), \({{\bf{p}}_{\bf{2}}}\left( t \right) = t - {\bf{3}}{t^{\bf{2}}}\), \({{\bf{p}}_{\bf{3}}}\left( t \right) = {\bf{1}} + t - {\bf{3}}{t^{\bf{2}}}\).

a. Use coordinate vectors to show that these polynomials form a basis of \({{\bf{P}}_{\bf{2}}}\).

b. Consider the basis \(B = \left\{ {{{\bf{p}}_{\bf{1}}},\,{{\bf{p}}_{\bf{2}}},\;{{\bf{p}}_{\bf{3}}}} \right\}\) for \({{\bf{P}}_{\bf{2}}}\). Find \({\bf{q}}\) in \({{\bf{P}}_{\bf{2}}}\), given that \({\left( {\bf{q}} \right)_B} = \left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{1}}\\{\bf{2}}\end{array}} \right)\)

Short Answer

Expert verified

a. The set spans for \({P_2}\).

b. \({\bf{q}} = 1 + 3t - 10{t^2}\)

Step by step solution

01

Write the polynomials in the standard vector form

\(\left\{ {1 + {t^2},t - 3{t^2},1 + t - 3{t^2}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}1\\0\\1\end{array}} \right),\,\left( {\begin{array}{*{20}{c}}0\\1\\{ - 3}\end{array}} \right),\,\left( {\begin{array}{*{20}{c}}1\\1\\{ - 3}\end{array}} \right)} \right\}\)

02

Form the matrix using the vectors

The matrix formed by using the vectors of the polynomials is:

\(A = \left( {\begin{array}{*{20}{c}}1&0&1\\0&1&1\\1&{ - 3}&{ - 3}\end{array}} \right)\)

03

Write the matrix in the echelon form

\(\left( {\begin{array}{*{20}{c}}1&0&1\\0&1&1\\1&{ - 3}&{ - 3}\end{array}} \right) \sim \left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\)

From the echelon form, it can be observed that for three variables, there are three equations. Hence, there are no free variables.

So, the given set spans for \({P_2}\).

04

Find the required vector

The required vector can be calculated as follows:

\(\begin{array}{c}{\bf{q}} = {P_B}{\left( {\bf{q}} \right)_B}\\ = \left( {{{\bf{p}}_1},\;{{\bf{p}}_2},\;{{\bf{p}}_3}} \right)\left( {\begin{array}{*{20}{c}}{ - 1}\\1\\2\end{array}} \right)\\ = \left( { - 1} \right)\left( {1 + {t^2}} \right) + \left( 1 \right)\left( {t - 3{t^2}} \right) + \left( 2 \right)\left( {1 + t - 3{t^2}} \right)\\ = 1 + 3t - 10{t^2}\end{array}\)

Therefore, the required vector is \({\bf{q}} = 1 + 3t - 10{t^2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 4, find the vector x determined by the given coordinate vector \({\left( x \right)_{\rm B}}\) and the given basis \({\rm B}\).

4. \({\rm B} = \left\{ {\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{2}}\\{\bf{0}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{3}}\\{ - {\bf{5}}}\\{\bf{2}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{7}}}\\{\bf{3}}\end{array}} \right)} \right\},{\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{4}}}\\{\bf{8}}\\{ - {\bf{7}}}\end{array}} \right)\)

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

  1. Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} A\). (Hint: Explain why every vector in the column space of \(AB\) is in the column space of \(A\).
  2. Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} B\). (Hint: Use part (a) to study rank\({\left( {AB} \right)^T}\).)

(M) Determine whether w is in the column space of \(A\), the null space of \(A\), or both, where

\({\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}1\\2\\1\\0\end{array}} \right),A = \left( {\begin{array}{*{20}{c}}{ - 8}&5&{ - 2}&0\\{ - 5}&2&1&{ - 2}\\{10}&{ - 8}&6&{ - 3}\\3&{ - 2}&1&0\end{array}} \right)\)

Suppose a \({\bf{5}} \times {\bf{6}}\) matrix A has four pivot columns. What is dim Nul A? Is \({\bf{Col}}\,A = {\mathbb{R}^{\bf{3}}}\)? Why or why not?

In Exercises 27-30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free