Let \(A\) be any \(2 \times 3\) matrix such that \({\mathop{\rm rank}\nolimits} A = 1\), let u be the first column of \(A\), and suppose \({\mathop{\rm u}\nolimits} \ne 0\). Explain why there is a vector v in \({\mathbb{R}^3}\) such that \(A = {{\mathop{\rm uv}\nolimits} ^T}\). How could this construction be modified if the first column of \(A\) were zero?

Short Answer

Expert verified

There is a vector in \({\mathbb{R}^3}\), such that \(A = {{\mathop{\rm uv}\nolimits} ^T}\).

Step by step solution

01

Explain that vector v is in \({\mathbb{R}^3}\) such that \(A = {{\mathop{\rm uv}\nolimits} ^T}\)

Suppose \(A = \left[ {\begin{array}{*{20}{c}}{{{\mathop{\rm u}\nolimits} _1}}&{{{\mathop{\rm u}\nolimits} _2}}&{{{\mathop{\rm u}\nolimits} _3}}\end{array}} \right]\) and rank \(A = 1\). Also, assume that \({{\mathop{\rm u}\nolimits} _1} \ne 0\). Then, \(\left\{ {{{\mathop{\rm u}\nolimits} _1}} \right\}\) is the basis for \({\mathop{\rm Col}\nolimits} A\) because it is assumed to be one-dimensional.

Therefore, there are two scalars \({\mathop{\rm x}\nolimits} \) and \(y\) with \({{\mathop{\rm u}\nolimits} _2} = {\mathop{\rm x}\nolimits} {{\mathop{\rm u}\nolimits} _1}\), \({{\mathop{\rm u}\nolimits} _3} = {\mathop{\rm y}\nolimits} {{\mathop{\rm u}\nolimits} _1}\), and \(A = {{\mathop{\rm u}\nolimits} _1}{{\mathop{\rm v}\nolimits} ^T}\), where \({\mathop{\rm v}\nolimits} = \left[ {\begin{array}{*{20}{c}}1\\x\\y\end{array}} \right]\).

02

State the first column of \(A\) is zero

When \({{\mathop{\rm u}\nolimits} _1} = 0\), \({{\mathop{\rm u}\nolimits} _2} \ne 0\). Similarly, \(\left\{ {{{\mathop{\rm u}\nolimits} _1}} \right\}\) is a basis for \({\mathop{\rm Col}\nolimits} A\) because \({\mathop{\rm Col}\nolimits} A\) is assumed to be one-dimensional. Therefore, there is a scalar \({\mathop{\rm x}\nolimits} \) with \({{\mathop{\rm u}\nolimits} _3} = {\mathop{\rm x}\nolimits} {{\mathop{\rm u}\nolimits} _2}\) and \(A = {{\mathop{\rm u}\nolimits} _2}{{\mathop{\rm v}\nolimits} ^T}\), where \({\mathop{\rm v}\nolimits} = \left[ {\begin{array}{*{20}{c}}0\\1\\{\mathop{\rm x}\nolimits} \end{array}} \right]\).

When \({{\mathop{\rm u}\nolimits} _1} = {{\mathop{\rm u}\nolimits} _2} = 0\) and \({{\mathop{\rm u}\nolimits} _3} \ne 0\), then \(A = {{\mathop{\rm u}\nolimits} _3}{{\mathop{\rm v}\nolimits} ^T}\), where \({\mathop{\rm v}\nolimits} = \left[ {\begin{array}{*{20}{c}}0\\0\\1\end{array}} \right]\).

Thus, there is a vector in \({\mathbb{R}^3}\) such that \(A = {{\mathop{\rm uv}\nolimits} ^T}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let be a linear transformation from a vector space \(V\) \(T:V \to W\)in to vector space \(W\). Prove that the range of T is a subspace of . (Hint: Typical elements of the range have the form \(T\left( {\mathop{\rm x}\nolimits} \right)\) and \(T\left( {\mathop{\rm w}\nolimits} \right)\) for some \({\mathop{\rm x}\nolimits} ,\,{\mathop{\rm w}\nolimits} \)in \(V\).)\(W\)

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^m}\) be a linear transformation.

a. What is the dimension of range of T if T is one-to-one mapping? Explain.

b. What is the dimension of the kernel of T (see section 4.2) if T maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^m}\)? Explain.

Suppose a nonhomogeneous system of nine linear equations in ten unknowns has a solution for all possible constants on the right sides of the equations. Is it possible to find two nonzero solutions of the associated homogeneous system that are not multiples of each other? Discuss.

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show the coordinate mapping is one to one. (Hint: Suppose \({\left( {\bf{u}} \right)_B} = {\left( {\bf{w}} \right)_B}\) for some u and w in V, and show that \({\bf{u}} = {\bf{w}}\)).

A homogeneous system of twelve linear equations in eight unknowns has two fixed solutions that are not multiples of each other, and all other solutions are linear combinations of these two solutions. Can the set of all solutions be described with fewer than twelve homogeneous linear equations? If so, how many? Discuss.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free