Let \({y_k} = {k^2}\)and \({z_k} = 2k\left| k \right|\). Are the signals \(\left\{ {{y_k}} \right\}\) and \(\left\{ {{z_k}} \right\}\) linearly independent? Evaluate the associated Casorati matrix \(C\left( k \right)\) for \(k = 0\), \(k = - 1\), and \(k = - 2\), and discuss your results.

Short Answer

Expert verified

No conclusion can be drawn about the signals \({y_k}\) and \({z_k}\), whether these are linearly independent or not.

\(C\left( 0 \right) = \left( {\begin{array}{*{20}{c}}0&0\\1&1\end{array}} \right)\), \(C\left( { - 1} \right) = \left( {\begin{array}{*{20}{c}}1&2\\0&0\end{array}} \right)\), \(C\left( { - 2} \right) = \left( {\begin{array}{*{20}{c}}4&{ - 8}\\1&{ - 2}\end{array}} \right)\), and the Casorati matrix is non invertible.

Step by step solution

01

Define Casorati matrix \(C\left( k \right)\) for \({y_k}\),\({z_k}\)

It is given that \({y_k} = {k^2}\) and \({z_k} = 2k\left| k \right|\).

\(C\left( k \right)\)can be evaluated as shown below:

\(\begin{aligned} C\left( k \right) &= \left( {\begin{array}{*{20}{c}}{{y_k}}&{{z_k}}\\{{y_{k + 1}}}&{{z_{k + 1}}}\end{array}} \right)\\ &= \left( {\begin{array}{*{20}{c}}{{k^2}}&{2k\left| k \right|}\\{{{\left( {k + 1} \right)}^2}}&{2\left( {k + 1} \right)\left| {k + 1} \right|}\end{array}} \right)\end{aligned}\)

02

Find \(C\left( 0 \right)\), \(C\left( { - 1} \right)\), \(C\left( { - 2} \right)\)

\(\begin{aligned} C\left( 0 \right) &= \left( {\begin{array}{*{20}{c}}{{{\left( 0 \right)}^2}}&{2\left( 0 \right)\left| 0 \right|}\\{{{\left( {0 + 1} \right)}^2}}&{2\left( {0 + 1} \right)\left| {0 + 1} \right|}\end{array}} \right)\\ &= \left( {\begin{array}{*{20}{c}}0&0\\1&1\end{array}} \right)\end{aligned}\)

\(\begin{aligned} C\left( 0 \right) &= \left( {\begin{array}{*{20}{c}}{{{\left( { - 1} \right)}^2}}&{2\left( { - 1} \right)\left| { - 1} \right|}\\{{{\left( { - 1 + 1} \right)}^2}}&{2\left( { - 1 + 1} \right)\left| { - 1 + 1} \right|}\end{array}} \right)\\ &= \left( {\begin{array}{*{20}{c}}1&2\\0&0\end{array}} \right)\end{aligned}\)

\(\begin{aligned} C\left( { - 2} \right) &= \left( {\begin{array}{*{20}{c}}{{{\left( { - 2} \right)}^2}}&{2\left( { - 2} \right)\left| { - 2} \right|}\\{{{\left( { - 2 + 1} \right)}^2}}&{2\left( { - 2 + 1} \right)\left| { - 2 + 1} \right|}\end{array}} \right)\\ &= \left( {\begin{array}{*{20}{c}}4&{ - 8}\\1&{ - 2}\end{array}} \right)\end{aligned}\)

03

Find the determinant of the Casorati matrix

The determinant of the Casorati matrix \(C\left( k \right)\)is evaluated below:

\(\begin{aligned} C\left( k \right) &= \left( {\begin{array}{*{20}{c}}{{k^2}}&{2k\left| k \right|}\\{{{\left( {k + 1} \right)}^2}}&{2\left( {k + 1} \right)\left| {k + 1} \right|}\end{array}} \right)\\ &= {k^2}\left( {2\left( {k + 1} \right)\left| {k + 1} \right|} \right) - \left( {2k\left| k \right|} \right){\left( {k + 1} \right)^2}\\ &= 2k\left( {k + 1} \right)\left( {k\left| {k + 1} \right| - \left( {k + 1} \right)\left| k \right|} \right)\end{aligned}\)

04

Discuss the cases for all values of \(k\)

There are three factors in the determinant expression.

The determinant is 0 if all or either of the three factors is zero.

So, if either \(k = 0\) or \(k = - 1\), the determinant is 0.

If \(k > 0\) or \(k > - 1\), the third factor simplifies as

\(\begin{array}{c}k\left| {k + 1} \right| - \left( {k + 1} \right)\left| k \right| = k\left( {k + 1} \right) - \left( {k + 1} \right)k\\ = 0.\end{array}\)

If \(k + 1 < 0\)or \(k < - 1\), the third factor simplifies as

\(\begin{array}{c}k\left| {k + 1} \right| - \left( {k + 1} \right)\left| k \right| = - k\left( {k + 1} \right) + \left( {k + 1} \right)k\\ = 0.\end{array}\)

05

Draw a conclusion

For all the natural values \(k\), the value of the determinant of \(C\left( k \right)\)is 0. Thus, the Casorati matrix cannot be inverted. It implies that no information can be extracted about signals \({y_k}\) and \({z_k}\), whether these are linearly independent or not.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 18, Ais an \(m \times n\) matrix. Mark each statement True or False. Justify each answer.

18. a. If B is any echelon form of A, then the pivot columns of B form a basis for the column space of A.

b. Row operations preserve the linear dependence relations among the rows of A.

c. The dimension of the null space of A is the number of columns of A that are not pivot columns.

d. The row space of \({A^T}\) is the same as the column space of A.

e. If A and B are row equivalent, then their row spaces are the same.

Let \({\mathop{\rm u}\nolimits} = \left[ {\begin{array}{*{20}{c}}1\\2\end{array}} \right]\). Find \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^3}\) such that \(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\2&{ - 6}&8\end{array}} \right] = {{\mathop{\rm uv}\nolimits} ^T}\) .

In Exercise 4, find the vector x determined by the given coordinate vector \({\left( x \right)_{\rm B}}\) and the given basis \({\rm B}\).

4. \({\rm B} = \left\{ {\left( {\begin{array}{*{20}{c}}{ - {\bf{1}}}\\{\bf{2}}\\{\bf{0}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{3}}\\{ - {\bf{5}}}\\{\bf{2}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{\bf{4}}\\{ - {\bf{7}}}\\{\bf{3}}\end{array}} \right)} \right\},{\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{4}}}\\{\bf{8}}\\{ - {\bf{7}}}\end{array}} \right)\)

Let V be a vector space that contains a linearly independent set \(\left\{ {{u_{\bf{1}}},{u_{\bf{2}}},{u_{\bf{3}}},{u_{\bf{4}}}} \right\}\). Describe how to construct a set of vectors \(\left\{ {{v_{\bf{1}}},{v_{\bf{2}}},{v_{\bf{3}}},{v_{\bf{4}}}} \right\}\) in V such that \(\left\{ {{v_{\bf{1}}},{v_{\bf{3}}}} \right\}\) is a basis for Span\(\left\{ {{v_{\bf{1}}},{v_{\bf{2}}},{v_{\bf{3}}},{v_{\bf{4}}}} \right\}\).

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\)and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Given vectors, \({u_{\bf{1}}}\),….,\({u_p}\) and w in V, show that w is a linear combination of \({u_{\bf{1}}}\),….,\({u_p}\) if and only if \({\left( w \right)_B}\) is a linear combination of vectors \({\left( {{{\bf{u}}_{\bf{1}}}} \right)_B}\),….,\({\left( {{{\bf{u}}_p}} \right)_B}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free